Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Strain Energy Density and Thermodynamic Entropy as Prognostic Measures of Crack Initiation in Aluminum

    Thumbnail
    View/Open
    Ontiveros_umd_0117E_14927.pdf (3.103Mb)
    No. of downloads: 2375

    Date
    2014
    Author
    Ontiveros, Victor Luis
    Advisor
    Modarres, Mohammad
    Metadata
    Show full item record
    Abstract
    A critical challenge to the continued use of engineering structures as they are asked to perform longer than their design life is the prediction of an initiating crack and the prevention of damage, estimation of remaining useful life, schedule maintenance and to reduce costly downtimes and inspections. The research presented in this dissertation explores the cumulative plastic strain energy density and thermodynamic entropy generation up to crack initiation. Plastic strain energy density and thermodynamic entropy generation are evaluated to investigate whether they would be capable of providing a physical basis for fatigue life and structural risk and reliability assessments. Navy aircraft, specifically, the Orion P-3C, which represent an engineered structure currently being asked to perform past is design life, which are difficult and time consuming to inspect from carrier based operations and are currently evaluated using an empirically based damage index the, fatigue life expended, is used as an example in this investigation. A set of experimental results for aluminum alloy 7075-T651, used in airframe structures, are presented to determine the correlation between plastic strain energy dissipation and the thermodynamic entropy generation versus fatigue crack initiation over a wide range of fatigue loadings. Cumulative plastic strain energy and thermodynamic entropy generation measured from hysteresis energy and temperature rise proved to be valid physical indices for estimation of the probability of crack initiation. Crack initiation is considered as a major evidence of fatigue damage and structural integrity risk. A Bayesian estimation and validation approach is used to determine systematic errors in the developed models as well as other model uncertainties. Comparisons of the energy-based and entropy-based models are presented and benefits of using one over the other are discussed.
    URI
    http://hdl.handle.net/1903/15155
    Collections
    • Mechanical Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility