Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Efficient Machine Learning Methods for Document Image Analysis

    Thumbnail
    View/Open
    Kumar_umd_0117E_14752.pdf (5.953Mb)
    No. of downloads: 1208

    Date
    2013
    Author
    Kumar, Jayant
    Advisor
    Davis, Larry
    Doermann, David
    Metadata
    Show full item record
    Abstract
    With the exponential growth in volume of multimedia content on the internet, there has been an increasing interest for developing more efficient and scalable algorithms to learn directly from data without excessive restrictions on nature of the content. In the context of document images, many large scale digitization projects have called for reliable and scalable triage methods for enhancement, segmentation, grouping and categorization of captured images. Current approaches, however, are typically limited to a specific class of documents such as scanned books, newspapers, journal articles or forms for example, and analysis and processing of more unconstrained and noisy heterogeneous document collections has not been as widely addressed. Additionally, existing machine-learning based approaches for document processing need to be carefully applied to handle the challenges associated with large and imbalanced training data. In this thesis, we address these challenges in three primary applications of document image analysis - low-level document enhancement, mid-level handwritten line segmentation, and high-level classification and retrieval. We first present a data selection method for training Support Vector Machines (SVM) on large-scale data sets. We apply the proposed approach to pixel-level document image enhancement, and show promising results with a relatively small number of training samples. Second, we present a graph-based method for segmentation of handwritten document images into text-lines which is more efficient and adaptive than previous approaches. Our approach demonstrates that combining results from local and global methods enhances the final performance of text-line segmentation. Third, we present an approach to compute structural similarities between images for classification and retrieval. Results on real-world data sets show that the approach is more effective than earlier approaches when the labeled data is limited. We extend our classification approach to a completely unsupervised setting, where both the number of classes and representative samples from each class is assumed to be unknown. We present a method for computing similarities based on learned structural patterns and correlations from the given data. Experiments with four different data sets show that our approach can estimate number of classes in large document collections and group structurally similar images with a high-accuracy.
    URI
    http://hdl.handle.net/1903/14921
    Collections
    • Computer Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility