Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Development and Implementation of Numerical Tools for Investigation into the Granular Dynamics of Solid Solar System Bodies

    Thumbnail
    View/Open
    Schwartz_umd_0117E_14664.pdf (31.81Mb)
    No. of downloads: 314

    Date
    2013
    Author
    Schwartz, Stephen Ross
    Advisor
    Richardson, Derek C
    Michel, Patrick
    Metadata
    Show full item record
    Abstract
    The work advanced in this thesis joins together the disciplines of planetary science and granular physics. Grain dynamics have played a prominent role in the evolution of our Solar System from planetesimal formation billions of years ago to the surface processes that take place today on terrestrial planets, moons, and small bodies. Recent spacecraft images of small Solar System bodies provide strong evidence that the majority of these bodies are covered in regolith. This regolith ranges in size from the fine powder found on the Moon to large rocks and boulders, like the 27 m Yoshinodai boulder on the small asteroid, Itokawa. Accordingly, the processes that take place on the solid bodies of the Solar System vary widely based upon the material properties of the regolith and the gravitational environments on their surfaces. An understanding of granular dynamics is also critical for the design and operations of landers, sampling devices and rovers to be included in space missions. Part of my research is concerned with the development of numerical tools that have the ability to provide explanations for the types of processes that our spacecraft have observed. Granular processes on Earth are incredibly complex and varied, and constitute an enormous field of study on their own, with input taken from across the broad disciplines of engineering and the physical sciences. In micro-gravity, additional forces, which on Earth are relevant only to micron-size particles or smaller, are expected to become important for material up to the size of large rocks, adding further complexity. The numerical tools developed in this work allow for the simulation of grains using an adaptation of the Soft-Sphere Discrete Element Method (SSDEM) along with implementations of cohesive forces between particles into an existing parallel gravity tree code.
    URI
    http://hdl.handle.net/1903/14876
    Collections
    • Astronomy Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility