Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A MODEL-BASED HUMAN RELIABILITY ANALYSIS METHODOLOGY (PHOENIX METHOD)

    Thumbnail
    View/Open
    Ekanem_umd_0117E_14793.pdf (5.923Mb)
    No. of downloads: 2199

    Date
    2013
    Author
    Ekanem, Nsimah J.
    Advisor
    MOSLEH, ALI
    Metadata
    Show full item record
    Abstract
    Despite the advances made so far in developing human reliability analysis (HRA) methods, many issues still exist. Most notable are; the lack of an explicit causal model that incorporates relevant psychological and cognitive theories in its core human performance model, inability to explicitly model interdependencies between human failure events (HFEs) and influencing factors on human performance, lack of consistency, traceability and reproducibility in HRA analysis. These issues amongst others have contributed to the variability in results seen in the application of different HRA methods and even in cases where the same method is applied by different analysts. In an attempt to address these issues, a framework for a model-based HRA methodology has been recently proposed which incorporates strong elements of current HRA good practices, leverages lessons learned from empirical studies and the best features of existing and emerging HRA methods. This research completely develops this methodology which is aimed at enabling a more credible, consistent, and accurate qualitative and quantitative HRA analysis. The complete qualitative analysis procedure (including a hierarchical performance influencing factor set) and a causal model using Bayesian Belief network (BBN) have been developed to explicitly model the influence and dependencies among HFEs and the different factors that influence human performance. This model has the flexibility to be modified for interfacing with existing methods like Standard-Plant-Analysis-Risk-HRA-method. Also, the quantitative analysis procedure has been developed, incorporating a methodology for a cause-based explicit treatment of dependencies among HFEs, which has not been adequately addressed by any other HRA method. As part of this research, information has been gathered from sources (including other HRA methods, NPP operating experience, expert estimates), analyzed and aggregated to provide estimates for the model parameters needed for quantification. While the specific instance of this HRA method is used in nuclear power plants, the methodology itself is generic and can be applied in other environments.
    URI
    http://hdl.handle.net/1903/14831
    Collections
    • Mechanical Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility