Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Small-Scale Testing to Study Mitigation of Acceleration on Simulated Vehicles

    Thumbnail
    View/Open
    Bonsmann_umd_0117E_14733.pdf (4.565Mb)
    No. of downloads: 767

    Date
    2013
    Author
    Bonsmann, Jarrod
    Advisor
    Fourney, William L
    Metadata
    Show full item record
    Abstract
    This dissertation investigates various means for mitigating acceleration experienced by passengers on vehicles subjected to blast loading. In order to complete this study, small-scale testing of simulated vehicles was used. The explosives designated for this research are exclusively buried in saturated sand, which will act as the loading media for the simulated vehicles. In addition to explosive testing, various tests were performed dynamically using a high-pressure gas gun. Initially, tests were performed to better understand the effects of vehicle mass and stand-off distance on vehicle acceleration due to blast loads; after which, studies were conducted to mitigate the acceleration. Test plates used in this study vary in both size and geometry. When necessary, simple plate geometries are employed to investigate various mitigation parameters. Ultimately, much of the testing was conducted on simplified scaled versions of vehicles likely to be subjected to attack. This paper focuses mainly on mitigation through crushing of thin-walled cylinders, but also investigates the advantages of applying polymeric coatings to dynamically loaded structures. Piezoelectric accelerometers are used in conjunction with high speed videography to collect test data. In addition to acceleration, impulse and kinetic energy of each test plate is examined. This research, though funded by the US Army, will be of use to all branches of the armed forces utilizing Mine-Resistant Ambush-Protected vehicles. The ultimate goal of this research is to help create a vehicle that will increase the probability that the passengers will survive a blast event with minimal long-term damage to the brain.
    URI
    http://hdl.handle.net/1903/14810
    Collections
    • Mechanical Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility