Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Breast Cancer Type 1 Susceptibility Protein is a Critical Regulator of Skeletal Muscle Lipid Metabolism

    Thumbnail
    View/Open
    Jackson_umd_0117E_14665.pdf (9.021Mb)
    No. of downloads: 134

    Date
    2013
    Author
    Jackson, Kathryn Campbell
    Advisor
    Spangenburg, Espen E
    Metadata
    Show full item record
    Abstract
    This dissertation research consists of three investigations in an effort to determine how circulating estrogens affect skeletal muscle lipid metabolism. Loss of circulating estrogens results in significant increases in visceral fat mass and intramuscular lipids (IMCL). These increases in lipid storage are strongly associated with an elevated risk of developing type 2 diabetes. The first investigation examined how the loss of circulating estrogens alters skeletal muscle metabolic function. Ovariectomy (OVX) resulted in significantly higher visceral fat mass and fatty acid sarcolemmal transporter content, which corresponded with elevated IMCL. Skeletal muscle in the OVX group exhibited lower acyl carnitine species suggesting impaired lipid flux through the mitochondria. Lastly, mitochondrial oxygen consumption rates were impaired in OVX skeletal muscle fibers. The results from this study gave rise to a search to identify an estrogen- sensitive mechanism that regulated lipid transport into the mitochondria. Study two determined for the first time that the BRCA1 protein, which is encoded by an estrogen-sensitive gene, is present and functions as an integral regulator of lipid metabolism in skeletal muscle. Specifically, BRCA1 binds to acetyl CoA carboxylase in response to acute exercise. The in vitro induction of decreases in BRCA1 expression resulted in higher IMCL content, reduced mitochondrial oxygen consumption rates, and elevated reactive oxygen species production. Surprisingly, no differences in BRCA1 content were detected between males and females. In the final study, an inducible, skeletal-muscle specific, BRCA1 KO mouse was developed. Ablation of BRCA1 in skeletal muscle resulted in exercise intolerance and the development of kyphosis. Contrary to our hypothesis, loss of functional BRCA1 in skeletal muscle attenuated the negative metabolic consequences of chronic high fat diet exposure. Collectively, these data provide strong rationale that BRCA1 is an important regulator of skeletal muscle metabolic function and further provide evidence that BRCA1 function is critical in multiple tissues across the body.
    URI
    http://hdl.handle.net/1903/14785
    Collections
    • Kinesiology Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility