University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Learning with Multiple Similarities

    Thumbnail
    View/Open
    Kumar_umd_0117E_14598.pdf (1.112Mb)
    No. of downloads: 351

    Date
    2013
    Author
    Kumar, Abhishek
    Advisor
    Daume III, Hal
    Metadata
    Show full item record
    Abstract
    The notion of similarities between data points is central to many classification and clustering algorithms. We often encounter situations when there are more than one set of pairwise similarity graphs between objects, either arising from different measures of similarity between objects or from a single similarity measure defined on multiple data representations, or a combination of these. Such examples can be found in various applications in computer vision, natural language processing and computational biology. Combining information from these multiple sources is often beneficial in learning meaningful concepts from data. This dissertation proposes novel methods to effectively fuse information from these multiple similarity graphs, targeted towards two fundamental tasks in machine learning - classification and clustering. In particular, I propose two models for learning spectral embedding from multiple similarity graphs using ideas from co-training and co-regularization. Further, I propose a novel approach to the problem of multiple kernel learning (MKL), converting it to a more familiar problem of binary classification in a transformed space. The proposed MKL approach learns a ``good'' linear combination of base kernels by optimizing a quality criterion that is justified both empirically and theoretically. The ideas of the proposed MKL method are also extended to learning nonlinear combinations of kernels, in particular, polynomial kernel combination and more general nonlinear kernel combination using random forests.
    URI
    http://hdl.handle.net/1903/14600
    Collections
    • Computer Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility