Towards Data-Driven Large Scale Scientific Visualization and Exploration
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
Technological advances have enabled us to acquire extremely large
datasets but it remains a challenge to store, process, and extract
information from them. This dissertation builds upon recent advances
in machine learning, visualization, and user interactions to
facilitate exploration of large-scale scientific datasets. First, we
use data-driven approaches to computationally identify regions of
interest in the datasets. Second, we use visual presentation for
effective user comprehension. Third, we provide interactions for
human users to integrate domain knowledge and semantic information
into this exploration process.
Our research shows how to extract, visualize, and explore informative
regions on very large 2D landscape images, 3D volumetric datasets,
high-dimensional volumetric mouse brain datasets with thousands of
spatially-mapped gene expression profiles, and geospatial trajectories
that evolve over time. The contribution of this dissertation include:
(1) We introduce a sliding-window saliency model that discovers
regions of user interest in very large images; (2) We develop visual
segmentation of intensity-gradient histograms to identify meaningful
components from volumetric datasets; (3) We extract boundary surfaces
from a wealth of volumetric gene expression mouse brain profiles to
personalize the reference brain atlas; (4) We show how to efficiently
cluster geospatial trajectories by mapping each sequence of locations
to a high-dimensional point with the kernel distance framework.
We aim to discover patterns, relationships, and anomalies that would
lead to new scientific, engineering, and medical advances. This work
represents one of the first steps toward better visual understanding
of large-scale scientific data by combining machine learning and human
intelligence.