Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Statistical Modeling of Wave Chaotic Transport and Tunneling

    Thumbnail
    View/Open
    Lee_umd_0117E_14498.pdf (2.577Mb)
    No. of downloads: 407

    Date
    2013
    Author
    Lee, Ming-Jer
    Advisor
    Ott, Edward
    Metadata
    Show full item record
    Abstract
    This thesis treats two general problem areas in the field of wave chaos. The first problem area that we address concerns short wavelength tunneling from a classically confined region in which the classical orbits are chaotic. We de- velop a quantitative theory for the statistics of energy level splittings for symmetric chaotic wells separated by a tunneling barrier. Our theory is based on the ran- dom plane wave hypothesis. While the fluctuation statistics are very different for chaotic and non-chaotic well dynamics, we show that the mean splittings of differ- ently shaped wells, including integrable and chaotic wells, are the same if their well areas and barrier parameters are the same. We also consider the case of tunneling from a single well into a region with outgoing quantum waves. Our second problem area concerns the statistical properties of the impedance matrix (related to the scattering matrix) describing the input/output properties of waves in cavities in which ray trajectories that are regular and chaotic coexist (i.e., `mixed' systems). The impedance can be written as a summation over eigenmodes where the eigenmodes can typically be classified as either regular or chaotic. By appropriate characterizations of regular and chaotic contributions, we obtain statis- tical predictions for the impedance. We then test these predictions by comparison with numerical calculations for a specific cavity shape, obtaining good agreement.
    URI
    http://hdl.handle.net/1903/14524
    Collections
    • Physics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility