Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Searching to Translate and Translating to Search: When Information Retrieval Meets Machine Translation

    Thumbnail
    View/Open
    Ture_umd_0117E_14453.pdf (1.545Mb)
    No. of downloads: 1809

    Date
    2013
    Author
    Ture, Ferhan
    Advisor
    Lin, Jimmy
    Metadata
    Show full item record
    Abstract
    With the adoption of web services in daily life, people have access to tremendous amounts of information, beyond any human's reading and comprehension capabilities. As a result, search technologies have become a fundamental tool for accessing information. Furthermore, the web contains information in multiple languages, introducing another barrier between people and information. Therefore, search technologies need to handle content written in multiple languages, which requires techniques to account for the linguistic differences. Information Retrieval (IR) is the study of search techniques, in which the task is to find material relevant to a given information need. Cross-Language Information Retrieval (CLIR) is a special case of IR when the search takes place in a multi-lingual collection. Of course, it is not helpful to retrieve content in languages the user cannot understand. Machine Translation (MT) studies the translation of text from one language into another efficiently (within a reasonable amount of time) and effectively (fluent and retaining the original meaning), which helps people understand what is being written, regardless of the source language. Putting these together, we observe that search and translation technologies are part of an important user application, calling for a better integration of search (IR) and translation (MT), since these two technologies need to work together to produce high-quality output. In this dissertation, the main goal is to build better connections between IR and MT, for which we present solutions to two problems: Searching to translate explores approximate search techniques for extracting bilingual data from multilingual Wikipedia collections to train better translation models. Translating to search explores the integration of a modern statistical MT system into the cross-language search processes. In both cases, our best-performing approach yielded improvements over strong baselines for a variety of language pairs. Finally, we propose a general architecture, in which various components of IR and MT systems can be connected together into a feedback loop, with potential improvements to both search and translation tasks. We hope that the ideas presented in this dissertation will spur more interest in the integration of search and translation technologies.
    URI
    http://hdl.handle.net/1903/14502
    Collections
    • Computer Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility