POINTING, ACQUISITION, AND TRACKING FOR DIRECTIONAL WIRELESS COMMUNICATIONS NETWORKS
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
Directional wireless communications networks (DWNs) are expected to
become a workhorse of the military, as they provide great network capacity in hostile
areas where omnidirectional RF systems can put their users in harm's way. These
networks will also be able to adapt to new missions, change topologies, use different
communications technologies, yet still reliably serve all their terminal users. DWNs
also have the potential to greatly expand the capacity of civilian and commercial
wireless communication. The inherently narrow beams present in these types of
systems require a means of steering them, acquiring the links, and tracking to
maintain connectivity. This area of technological challenges encompasses all the
issues of pointing, acquisition, and tracking (PAT).
iii
The two main technologies for DWNs are Free-Space Optical (FSO) and
millimeter wave RF (mmW). FSO offers tremendous bandwidths, long ranges, and
uses existing fiber-based technologies. However, it suffers from severe turbulence
effects when passing through long (>kms) atmospheric paths, and can be severely
affected by obscuration. MmW systems do not suffer from atmospheric effects
nearly as much, use much more sensitive coherent receivers, and have wider beam
divergences allowing for easier pointing. They do, however, suffer from a lack of
available small-sized power amplifiers, complicated RF infrastructure that must be
steered with a platform, and the requirement that all acquisition and tracking be done
with the data beam, as opposed to FSO which uses a beacon laser for acquisition and
a fast steering mirror for tracking.
This thesis analyzes the many considerations required for designing and
implementing a FSO PAT system, and extends this work to the rapidly expanding
area of mmW DWN systems. Different types of beam acquisition methods are
simulated and tested, and the tradeoffs between various design specifications are
analyzed and simulated to give insight into how to best implement a transceiver
platform.
An experimental test-bed of six FSO platforms is also designed and constructed
to test some of these concepts, along with the implementation of a three-node biconnected
network. Finally, experiments have been conducted to assess the
performance of fixed infrastructure routing hardware when operating with a
physically reconfigurable RF network.