Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Asymptotics of the Yang-Mills Flow for Holomorphic Vector Bundles over Kahler Manifolds

    Thumbnail
    View/Open
    Sibley_umd_0117E_14136.pdf (681.9Kb)
    No. of downloads: 514

    Date
    2013
    Author
    Sibley, Benjamin Caleb
    Advisor
    Wentworth, Richard A
    Metadata
    Show full item record
    Abstract
    In this thesis we study the limiting properties of the Yang-Mills flow associated to a holomorphic vector bundle $E$ over an arbitrary K"{a}hler manifold $(X,omega )$. In particular we show that the flow is determined at infinity by the holomorphic structure of $E$. Namely, if we fix an integrable unitary reference connection $A_{0}$ defining the holomorphic structure, then the Yang-Mills flow with initial condition $A_{0}$, converges (away from an appropriately defined singular set) in the sense of the Uhlenbeck compactness theorem to a holomorphic vector bundle $E_{infty } $, which is isomorphic to the associated graded object of the Harder-Narasimhan-Seshadri filtration of $(E,A_{0})$. Moreover, $E_{infty }$ extends as a reflexive sheaf over the singular set as the double dual of the associated graded object. This is an extension of previous work in the cases of $1$ and $2$ complex dimensions and proves the general case of a conjecture of Bando and Siu. Chapter 1 is an introduction and a review of the background material. Chapter 2 gives the proof of several critical intermediate results, including the existence of an approximate critical hermitian structure. Chapter 3 concludes the proof of the main theorem.
    URI
    http://hdl.handle.net/1903/14056
    Collections
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility