Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Structured Plasma Waveguides and Deep EUV Generation Enabled by Intense Laser-Cluster Interactions

    Thumbnail
    View/Open
    Layer_umd_0117E_13678.pdf (6.462Mb)
    No. of downloads: 1062

    Date
    2012
    Author
    Layer, Brian
    Advisor
    Milchberg, Howard M
    Metadata
    Show full item record
    Abstract
    Using the unique properties of the interaction between intense, short-pulse lasers and nanometer scale van-der-Waals bonded aggregates (or `clusters'), modulated waveguides in hydrogen, argon and nitrogen plasmas were produced and extreme ultraviolet (EUV) light was generated in deeply ionized nitrogen plasmas. A jet of clusters behaves as an array of mass-limited, solid-density targets with the average density of a gas. Two highly versatile experimental techniques are demonstrated for making preformed plasma waveguides with periodic structure within a laser-ionized cluster jet. The propagation of ultra-intense femtosecond laser pulses with intensities up to 2x10<super>17<super> W/cm<super>2<super> has been experimentally demonstrated in waveguides generated using both methods, limited by available laser energy. The first uses a `ring grating' to impose radial intensity modulations on the channel-generating laser pulse, which leads to axial intensity modulations at the laser focus within the cluster jet target. This creates a waveguide with axial modulations in diameter with a period between 35 &mu;m and 2 mm, determined by the choice of ring grating. The second method creates modulated waveguides by focusing a uniform laser pulse within a jet of clusters with flow that has been modulated by periodically spaced wire obstructions. These wires make sharp, stable voids as short as 50 &mu;m with a period as small as 200 &mu;m within waveguides of hydrogen, nitrogen, and argon plasma. The gaps persist as the plasma expands for the full lifetime of the waveguide. This technique is useful for quasi-phase matching applications where index-modulated guides are superior to diameter modulated guides. Simulations show that these `slow wave' guiding structures could allow direct laser acceleration of electrons, achieving gradients of 80 MV/cm and 10 MV/cm for laser pulse powers of 1.9 TW and 30 GW, respectively. Results are also presented from experiments in which a nitrogen cluster jet from a cryogenically cooled gas valve was irradiated with relativistically intense (up to 2x10<super>18<super> W/cm<super>2<super>) femtosecond laser pulses. The original purpose of these experiments was to create a transient recombination-pumped nitrogen soft x-ray laser on the 2p<sub>3/2<sub>&rarr;1s<sub>1/2<sub> (&lambda; = 24.779 &Aring;) and 2p<sub>1/2<sub>&rarr;1s<sub>1/2<sub> (&lambda; = 24.785 &Aring;) transitions in H-like nitrogen (N<super>6+<super>). Although no amplification was observed, trends in EUV emission from H-like, He-like and Li-like nitrogen ions in the 15 - 150 &Aring; spectral range were measured as a function of laser intensity and cluster size. These results were compared with calculations run in a 1-D fluid laser-cluster interaction code to study the time-dependent ionization, recombination, and evolution of nitrogen cluster plasmas.
    URI
    http://hdl.handle.net/1903/13831
    Collections
    • Physics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility