Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Activation, Multiple-Bond Cleavage, and Fixation of Small Molecules Employing Group 6 Cyclopentadienyl, Amidinate (CpAm) Complexes

    Thumbnail
    View/Open
    Yonke_umd_0117E_13697.pdf (7.035Mb)
    No. of downloads: 193

    Date
    2012
    Author
    Yonke, Brendan Louis
    Advisor
    Sita, Lawrence R
    Metadata
    Show full item record
    Abstract
    Small molecules (e.g. N2, CO2, N2O) represent potential cheap and abundant chemical feedstocks. Despite the use of small molecules in various biosynthetic pathways, relatively few synthetic processes for the commercial utilization of small molecules exist. To investigate potential catalytic and stoichiometric methods for the activation, multiple-bond cleavage, and fixation of small molecules, Group 6 cyclopentadienyl, amidinate (CpAm) dinitrogen and multiple metal-ligand bonded complexes were investigated. Provided the weak activation of N2 in Group 6 dinitrogen complexes, these complexes were found to serve as M(II, d4) and M(IV, d2) synthons for the respective formation of Group 6 bis(carbonyl), bis(isocyanide), as well as mononuclear oxo and imido complexes. Moreover, a general route to Group 6 CpAm imido complexes of variable substitution was demonstrated upon the reaction of Group 6 CpAm dichloride complexes 48 and 49, respectively, with lithium amides, for steric amidinate deprotonation followed amido-imido tautomerization. Utilizing the synthesized mononuclear oxo and imido complexes various catalytic atom transfer reactions were demonstrated with their mechanistic details elucidated. These catalytic processes include the first ever oxygen atom transfer (OAT) reactions involving early transition metals including the synthesis of isocyanates from N2O and isocyanides, light-mediated degenerate OATs between CO2 and CO, and light-mediated non-degenerate OATs involving N2O and CO. Likewise, thermal-mediated nitrogen atom transfer (NAT) reactions were shown for the synthesis of isocyanates from organic azides (N3R) and CO. Key to this observed reactivity was the ability of multiply bonded metal ligands to undergo reaction with adjacent Lewis acidic ligands with this reactivity having been found to likewise facilitate interligand silyl group transfer in ð-loaded Group 6 CpAm oxo trimethylsilyl imido complexes. Despite direct utilization of the small molecules N2O and CO2 in OAT reactions, NAT reactions were found to require the use of organic azides. Therefore, in an effort to directly utilize N2 in NAT reactions, a novel photolytic N-N cleavage process was devised for the Group 6 dinitrogen complexes 52 and 53. This novel photolytic N-N cleavage represents the first time a ligand set has been shown to facility distinctly different N-N cleavage mechanisms for N2 bound to different metals.
    URI
    http://hdl.handle.net/1903/13595
    Collections
    • Chemistry & Biochemistry Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility