Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    THE DYNAMICS OF DIUBIQUITIN REVEALED BY NMR: WHAT IS THE DRIVING FORCE BETWEEN THE OPEN AND CLOSED STATES?

    Thumbnail
    View/Open
    Lai_umd_0117E_13567.pdf (3.953Mb)
    No. of downloads: 225

    Date
    2012
    Author
    Lai, Ming-Yih
    Advisor
    Fushman, David
    Metadata
    Show full item record
    Abstract
    The K48-linked polyubiquitin chains are important signals for proteasomal degradation and other biological processes. Their recognition of ubiquitin binding partners such as the UBA2 (ubiquitin associated domain 2) domain of hHR23a is via the canonical hydrophobic patch formed by L8, I44, and V70. In near physiological pH (pH 6.8), the K48-linked diubiquitin predominantly adopts the closed conformation in which the binding sites for ubiquitin-binding partners are buried in the inter-domain interface, and therefore are not available for binding. The K48-linked diubiquitin also can adopt an open conformation at acidic pH. However, the mechanism of the transition between the open and closed states is poorly understood. This study is aimed at elucidating the driving force for the exchange between the open and closed conformations of K48-linked diubiquitin. Using different mutations of H68 in diubiquitin and NMR methods, I found that the protonation state of the histidine side chain is crucial for controlling the equilibrium between open and closed conformations. I also found that H68 is essential for maintaining the integrity of the inter-domain interface. I concluded that there are at least four interactions involved in controlling the transitions between open and closed states. These are point-to-point repulsion (strongest), point-to-bulk repulsion (medium), bulk-to-bulk repulsion (weakest), and hydrophobic interaction. Based on these results, I also proposed a pre-open state model for K48-linked diubiquitin which assumes that the closed conformation of Ub2 opens by twisting instead of directly pulling two domains away from each other.
    URI
    http://hdl.handle.net/1903/13240
    Collections
    • Chemistry & Biochemistry Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility