Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    RAPID Lithography: Photopolymerization Characterization and Initiation Kinetics

    Thumbnail
    View/Open
    Stocker_umd_0117E_13327.pdf (51.11Mb)
    No. of downloads: 439

    Date
    2012
    Author
    Stocker, Michael Paul
    Advisor
    Fourkas, John T
    Metadata
    Show full item record
    Abstract
    In order to improve upon the resolution of photolithography, a technique that is used to produce features for today's micro and nanodevices, techniques must move beyond e-beam and deep-UV sources. Multiphoton absorption polymerization (MAP) uses near-infrared light for the creation of complex, three-dimensional features on the sub-100 nm scale. The resolution of MAP can be enhanced further using a two-beam technique called resolution augmentation through photo-induced deactivation (RAPID) to the reach feature sizes as small as 40 nm. The mechanism and kinetics of photo-induced deactivation are not well understood. To better understand these processes, studies of different photoinitiators have been performed. We find that some photoinitiators are so efficient at deactivation that they are capable of undergoing self-deactivation by addition of another photon from the excitation source. This phenomenon is manifested in a polymerization trend in which feature size has a proportional velocity (PROVE) dependence, the opposite of the conventional velocity dependence. We also demonstrate that the velocity dependence can also be tuned between PROVE and conventional dependences. Kinetic models have been formulated to account for the observed deactivation. By reconciling experimental data for some sample photoinitiators with the kinetic model through the use of simulations, kinetic rate constants are determined. The self-deactivation efficiency of each photoinitiator was determined. The lifetimes of intermediates in the radical photopolymerization process were also determined. The kinetic rate constants associated with photoinitiators should allow for the customization of photoinitiators for specific applications and make RAPID a more efficient process capable of reaching resolution on the level of 30 nm and below.
    URI
    http://hdl.handle.net/1903/13133
    Collections
    • Chemistry & Biochemistry Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility