Generating memory cytotoxic T lymphocytes through repetitive peptide boosting
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
Cytotoxic T lymphocytes (CTLs) play a critical role in controlling intracellular pathogens and cancer cells, and induction of memory CTLs holds promise for developing effective vaccines against critical virus infections. However, generating memory CTLs remains a major challenge for conventional vector-based, prime-boost vaccinations. Thus, it is imperative that we explore nonconventional alternatives, such as boosting without vectors. We show here that repetitive intravenous boosting with peptide and adjuvant generates memory CD8 T cells of sufficient quality and quantity to protect against infection in mice. The resulting memory CTLs possess a unique and long-lasting effector memory phenotype, characterized by decreased interferon-gamma but increased granzyme B production. These results are independent of the specific adjuvant applied and are observed in both transgenic and endogenous models. Overall, our findings have important implications for future vaccine development, as they suggest that intravenous peptide boosting with adjuvant following priming can induce long-term functional memory CTLs.