Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    CHARGE TRANSPORT IN GRAPHENE WITH ADATOM OVER-LAYERS ; CHARGED IMPURITY SCATTERING, DIELECTRIC SCREENING, AND LOCALIZATION.

    Thumbnail
    View/Open
    Jang_umd_0117E_12708.pdf (2.573Mb)
    No. of downloads: 1828

    Date
    2011
    Author
    Jang, Chaun
    Advisor
    Fuhrer, Michael S
    Metadata
    Show full item record
    Abstract
    Graphene, a single atom thick plane of graphite, is a novel two-dimensional electron system in which the low-energy electrons behave as massless chiral Dirac fermions. This thesis explores the effects of disorder in graphene through controlled surface modification in ultra-high vacuum (UHV), coupled with in situ electronic transport experiments. Three different roles of adatom overlayers on graphene are investigated. First, the effects of charged impurity scattering are studied by introducing potassium ions on the graphene at low temperature in UHV. The theoretically expected magnitude and linear density-dependence of the conductivity due to long range Coulomb scattering is verified. Second, the effective dielectric constant of graphene is modified by adding ice overlayers at low temperature in UHV. The opposing effects of screening on scattering by long range (charged impurity) and short range impurities are observed as variations in conductivity, and the changes are in agreement with Boltzmann theory for graphene transport within the random phase approximation. The minimum conductivity of graphene is roughly independent of charged impurity density and dielectric constant, in agreement with the self-consistent theory of screened carrier density inhomogeneity (electron and hole puddles). Taken together, the experimental results on charged impurity scattering and dielectric screening strongly support that long range Coulomb scattering is the dominant scattering mechanism in as-fabricated graphene on SiO2. In addition to the semi-classical transport properties, quantum transport is also studied with cobalt decorated graphene. Strong localization is achieved in the disordered graphene through deposition of cobalt nanoclusters. In finite magnetic field a phase transition occurs from the localized state to the quantum Hall state. Scaling analysis confirms that the transition is a quantum phase transition which is similar to the localization - delocalization transitions in other two dimensional electron systems.
    URI
    http://hdl.handle.net/1903/12265
    Collections
    • Physics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility