Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Computer Science Research Works
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Computer Science Research Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Global Network Alignment Using Multiscale Spectral Signatures

    Thumbnail
    View/Open
    ghost.pdf (268.7Kb)
    No. of downloads: 2502

    Date
    2011
    Author
    Patro, Rob
    Kingsford, Carl
    Metadata
    Show full item record
    Abstract
    Motivation: Protein interaction networks provide an important system-level view of biological processes. One of the fundamental problems in biological network analysis is the global alignment of a pair of networks, which puts the proteins of one network into correspondence with the proteins of another network in a manner that conserves their interactions while respecting other evidence of their homology. By providing a mapping between the networks of different species, alignments can be used to inform hypotheses about the functions of unannotated proteins, the existence of unobserved interactions, the evolutionary divergence between the two species and the evolution of complexes and pathways. Results: We introduce GHOST, a global pairwise network aligner that uses a novel spectral signature to measure topological similarity across disparate networks. It exhibits state-of-the-art performance on several network alignment tasks. We show that the spectral signature used by GHOST is highly discriminative, while the alignments it produces are also robust to experimental noise. When compared with other recent approaches, we find that GHOST is able to recover larger and biologically-significant, shared subnetworks between species. Availability: An efficient and parallelized implementation of GHOST, released under the Apache 2.0 license, is available at http:// cbcb.umd.edu/kingsford-group/ghost
    URI
    http://hdl.handle.net/1903/12160
    Collections
    • Computer Science Research Works

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility