Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mars Weather and Predictability: Modeling and Ensemble Data Assimilation of Spacecraft Observations

    Thumbnail
    View/Open
    Greybush_umd_0117E_12394.pdf (5.166Mb)
    No. of downloads: 1087

    Date
    2011
    Author
    Greybush, Steven J.
    Advisor
    Kalnay, Eugenia
    Metadata
    Show full item record
    Abstract
    Combining the perspectives of spacecraft observations and the GFDL Mars General Circulation Model (MGCM) in the framework of ensemble data assimilation leads to an improved understanding of the weather and climate of Mars and its atmospheric predictability. The bred vector (BV) technique elucidates regions and seasons of instability in the MGCM, and a kinetic energy budget reveals their physical origins. Instabilities prominent in the late autumn through early spring seasons of each hemisphere along the polar temperature front result from baroclinic conversions from BV potential to BV kinetic energy, whereas barotropic conversions dominate along the westerly jets aloft. Low level tropics and the northern hemisphere summer are relatively stable. The bred vectors are linked to forecast ensemble spread in data assimilation and help explain the growth of forecast errors. Thermal Emission Spectrometer (TES) temperature profiles are assimilated into the MGCM using the Local Ensemble Transform Kalman Filter (LETKF) for a 30-sol evaluation period during the northern hemisphere autumn. Short term (0.25 sol) forecasts compared to independent observations show reduced error (3-4 K global RMSE) and bias compared to a free running model. Several enhanced techniques result in further performance gains. Spatially-varying adaptive inflation and varying the dust distribution among ensemble members improve estimates of analysis uncertainty through the ensemble spread, and empirical bias correction using time mean analysis increments help account for model biases. With bias correction, we estimate a predictability horizon of about 5 sols during which temperature, wind, and surface pressure forecasts initialized from an assimilation analysis are superior to a free running model forecast. LETKF analyses, when compared with the UK reanalysis, show a superior correspondence to independent radio science temperature profiles. Traveling waves in both hemispheres share a correspondence in phase, and temperature differences between the analyses are generally less than 5 K. Assimilation of Mars Climate Sounder (MCS) temperature profiles reveals the importance of vertical distributions of dust and water ice aerosol in reducing model bias. A strategy for assimilation of TES and MCS aerosol products is outlined for future work.
    URI
    http://hdl.handle.net/1903/12110
    Collections
    • Atmospheric & Oceanic Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility