Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    In Situ Processing of PtSn Electrocatalysts for CO Tolerance in PEM Fuel Cells

    Thumbnail
    View/Open
    Utz_umd_0117N_12457.pdf (9.020Mb)
    No. of downloads: 1510

    Date
    2011
    Author
    Utz, Robert
    Advisor
    Jackson, Gregory S
    Metadata
    Show full item record
    Abstract
    Improved anode CO tolerance is a promising approach for integrating low-temperature PEM fuel cells with hydrocarbon fuel processors in cost-effective systems for portable and stationary power applications. PtSn@Pt core-shell nanoparticle electrocatalysts - created by applying cyclic potentials in the presence of CO to PtSn intermetallic nanoparticles in rotating disk electrode (RDE) experiments - have demonstrated the potential for high CO tolerance at low temperatures. This study explores the use of potential cycling with full PEM fuel cell membrane electrode assemblies (MEAs), initially with PtSn anode electrocatalysts, to produce PtSn@Pt electrocatalysts in situ for increased anode CO tolerance. Potential cycling of PtSn anodes in MEAs with various gaseous feeds consistently showed less dramatic decreases in CO oxidation overpotentials than observed in RDE studies. Although some results suggested that modified PtSn electrocatalysts outperform state-of-the-art PtRu anode electrocatalysts, PtSn@Pt electrocatalysts formed via MEA potential cycling consistently did not provide adequately low anode overpotentials with CO up to 1000 ppm to outperform commercial PtRu anode catalysts. Energy-dispersive X-ray spectroscopy of MEA cross-sections showed that Sn leached from the anode into the cathode as the number of cycles increased. Consistent formation of PtSn@Pt core-shell structures for high CO tolerance in full MEAs remains a challenge for further investigation.
    URI
    http://hdl.handle.net/1903/11907
    Collections
    • Mechanical Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility