Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Geometric Structures and Optimization on Spaces of Finite Frames

    Thumbnail
    View/Open
    Strawn_umd_0117E_12148.pdf (446.3Kb)
    No. of downloads: 1738

    Date
    2011
    Author
    Strawn, Nathaniel
    Advisor
    Benedetto, John J
    Balan, Radu V
    Metadata
    Show full item record
    Abstract
    A finite (μ, Ѕ)-frame variety consists of the real or complex matrices F = [f1 … fn] with frame operator FF* = S, and which also satisfies ||fi|| = μi for all i = 1,...,N. Here, S is a fixed Hermitian positive definite matrix and μ = [μ1...μN] is a fixed list of lengths. These spaces generalize the well-known spaces of finite unit-norm tight frames. We explore the local geometry of these spaces and develop geometric optimization algorithms based on the resulting insights. We study the local geometric structure of the (μ, Ѕ)-frame varieties by viewing them as intersections of generalized tori (the length constraints) with distorted Stiefel manifolds (the frame operator constraint). Exploiting this perspective, we characterize the nonsingular points of these varieties by determining where this intersection is transversal in a Hilbert-Schmidt sphere. A corollary of this characterization is a characterization of the tangent spaces of (μ, Ѕ)-frame varieties, which is in turn leveraged to validate explicit local coordinate systems. Explict bases for the tangent spaces are also constructed. Geometric optimization over a (μ, Ѕ)-frame variety is performed by combining knowledge of the tangent spaces with geometric optimization of the frame operator distance over a product of spheres. Given a differentiable objective function, we project the full gradient onto the tangent space and then minimize the frame operator distance to obtain an approximate gradient descent algorithm. To partially validate this procedure, we demonstrate that the induced flow converges locally. Using Sherman-Morrision type formulas, we also describe a technique for constructing points on these varieties that can be used to initialize the optimization procedure. Finally, we apply the approximate gradient descent procedure to numerically construct equiangular tight frames, Grassmannian frames, and Welch bound equality sequences with low mutual coherence.
    URI
    http://hdl.handle.net/1903/11710
    Collections
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility