Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Balayage of Fourier Transforms and the Theory of Frames

    Thumbnail
    View/Open
    AuYeung_umd_0117E_12131.pdf (434.5Kb)
    No. of downloads: 722

    Date
    2011
    Author
    Au-Yeung, Enrico
    Advisor
    Benedetto, John
    Metadata
    Show full item record
    Abstract
    Every separable Hilbert space has an orthogonal basis. This allows every element in the Hilbert space to be expressed as an infinite linear combination of the basis elements. The structure of a basis can be too rigid in some situations. Frames gives us greater flexibility than bases. A frame in Hilbert space is a spanning set with the reconstruction property. A frame must satisfy both an upper frame bound and a lower frame bound. The requirement of an upper bound is rather modest. Most of the mathematical difficulty lies in showing the lower bound exists. We examine the theory of Beurling on Balayage of Fourier transforms and the role of spectral synthesis in this theory. Beurling showed that if the condition of Balayage holds, then the lower frame bound for a Fourier frame exists under suitable hypothesis. We extend this theory to obtain lower bound inequalities for other types of frames. We prove that lower bounds exist for generalized Fourier frames and two types of semi-discrete Gabor frames.
    URI
    http://hdl.handle.net/1903/11699
    Collections
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility