Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Corn Residual Nitrate and its Implications for Fall Nitrogen Management in Winter Wheat

    Thumbnail
    View/Open
    Forrestal_umd_0117E_12028.pdf (2.268Mb)
    No. of downloads: 1909

    Date
    2011
    Author
    Forrestal, Patrick Joseph
    Advisor
    Kratochvil, Robert J
    Metadata
    Show full item record
    Abstract
    Corn (Zea mays, L.) production typically requires supplemental nitrogen (N) to optimize yields. In dryland corn production systems, where N is applied during the early to mid-vegetative growth stages, inappropriate N applications or limited moisture during the growing season can result in large disparities between optimum and applied N rates. This leads to variable post-harvest residual nitrate (NO3-N) accumulation, which is susceptible to loss. However, this NO3-N could provide the starter N requirement of the subsequent winter wheat (Triticum aestivum, L.) crop. Accounting for residual NO3-N present at wheat planting is important to avoid compounding N loss potential due to corn residual NO3-N accumulation. The objectives of this study were to 1) examine plant based tools for assessing soil NO3-N; 2) to examine post-harvest residual NO3-N accumulation patterns following corn production; 3) to determine optimum fall starter N rates for winter wheat production; and 4) to identify a soil NO3-N level above which starter N could be forgone without negative agronomic effect. This study found that plant canopy measurements are useful tools for assessing corn N management and for identifying drought sites, which had the greatest NO3-N accumulations. The corn stalk nitrate test was significantly (p<0.001) and positively correlated with soil residual NO3-N (r2=0.41). Greatest soil residual NO3-N accumulation occurred where drought conditions reduced production. The agronomic optimum fall starter N rate for winter wheat in Maryland is 17 to 34 kg N ha-1 where soil NO3-N concentration to 15 cm depth is less than 15 mg kg-1. However, the fall starter N response was highly variable and declined significantly (p<0.01) as fall precipitation after planting increased. The results of this study indicate that residual NO3-N levels at planting should be considered before applying fall starter N to winter wheat.
    URI
    http://hdl.handle.net/1903/11509
    Collections
    • Plant Science & Landscape Architecture Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility