Show simple item record

Fiber Optical Tweezers for Microscale and Nanoscale Particle Manipulation and Force Sensing

dc.contributor.advisorYu, Miaoen_US
dc.contributor.authorLiu, Yuxiangen_US
dc.description.abstractOptical tweezers have been an important tool in biology and physics for studying single molecules and colloidal systems. Most of current optical tweezers are built with microscope objectives, which are: i) expensive, ii) bulky and hard to integrate, iii) sensitive to environmental fluctuations, iv) limited in terms of working distances from the substrate, and v) rigid with the requirements on the substrate (transparent substrate made with glass and with a fixed thickness). These limitations of objective-based optical tweezers prevent them from being miniaturized. Fiber optical tweezers can provide a solution for cost reduction and miniaturization, and these optical tweezers can be potentially used in microfluidic systems. However, the existing fiber optical tweezers have the following limitations: i) low trapping efficiency due to weakly focused beams, ii) lack of the ability to control the positions of multiple particles simultaneously, and iii) limited functionalities. The overall objective of this dissertation work is to further the fundamental understanding of fiber optical tweezers through experimental study and modeling, and to develop novel fiber optical tweezers systems to enhance the capability and functionalities of fiber optical tweezers as microscale and nanoscale manipulators/sensors. The contributions of this dissertation work are summarized as follows: i) An enhanced understanding of the inclined dual-fiber optical tweezers (DFOTs) system has been achieved. Stable three dimensional (3D) optical trapping of a single micron-sized particle has been experimentally demonstrated. This is the first time that the trapping efficiency has been calibrated and the stiffness of the trap has been obtained in the experiments, which has been carried out by using two methods: the drag force method and power spectrum analysis. Such calibration enables the system to be used as a picoNewton-level force sensor in addition to a particle manipulator. The influence of system parameters on the trapping performance has been carefully investigated through both experimental and numerical studies. ii) Multiple traps have been created and carefully studied with the inclined DFOTs for the first time. Three traps, one 3D trap and two 2D traps, have been experimentally created at different vertical levels with adjustable separations and positions. iii) Multiple functionalities have been achieved and studied for the first time with the inclined DFOTs. Particle separation, grouping, stacking, rod alignment, rod rotation, and optical binding have been experimentally demonstrated. The multiple functionalities allow the inclined DFOTs to find applications in the study of interaction forces in colloidal systems as well as parallel particle manipulation in drug delivery systems. iv) Far-field superfocusing effect has been investigated and successfully demonstrated with a fiber-based surface plasmonic (SP) lens for the first time. A planar SP lens with a set of concentric nanoscale rings on a fiber endface has been developed. For the first time, a focus size that is comparable to the smallest achievable focus size of high NA objective lenses has been achieved with the fiber-based SP lens. The fiber-based SP lens can bridge the nanoscale particles/systems and the macroscale power sources/detectors, which has been a long standing challenge for nanophotonics. In addition to optical trapping, the fiber-based SP lens will impact many applications including high-resolution lithography, high-resolution fluorescence detection, and sub-wavelength imaging. v) Trapping ability enhanced with the fiber-based SP lens has been successfully demonstrated. With the help of the fiber-based SP lens, the trapping efficiency of fiber optical tweezers has been significantly enhanced, which is comparable with that of objective-based optical tweezers. A submicron-sized bacterium has been successfully trapped in three dimensions for the first time with optical tweezers based on single fibers.en_US
dc.titleFiber Optical Tweezers for Microscale and Nanoscale Particle Manipulation and Force Sensingen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.contributor.departmentMechanical Engineeringen_US
dc.subject.pqcontrolledMechanical Engineeringen_US
dc.subject.pquncontrolledfiber-based superfocusingen_US
dc.subject.pquncontrolledfiber optical tweezersen_US
dc.subject.pquncontrolledmultiple optical trapsen_US
dc.subject.pquncontrolledthree-dimensional nanoparticle manipulationen_US
dc.subject.pquncontrolledthree-dimensional optical trappingen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record