Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Precise steering of particles in electroosmotically actuated microfluidic devices

    Thumbnail
    View/Open
    Chaudhary_umd_0117E_11688.pdf (2.492Mb)
    No. of downloads: 422

    Date
    2010
    Author
    Chaudhary, Satej
    Advisor
    Shapiro, Benjamin
    Metadata
    Show full item record
    Abstract
    In this thesis, we show how to combine microfluidics and feedback control to independently steer multiple particles with micrometer accuracy in two dimensions. The particles are steered by creating a fluid flow that carries all the particles from where they are to where they should be at each time step. Our control loop comprises sensing, computation, and actuation to steer particles along user-input trajectories. Particle positions are identified in real-time by an optical system and transferred to a control algorithm that then determines the electrode voltages necessary to create a flow field to carry all the particles to their next desired locations. The process repeats at the next time instant. Our method achieves inexpensive steering of particles by using conventional electroosmotic actuation in microfluidic channels. This type of particle steering has significant advantages over other particle steering methods, such as laser tweezers. (Laser tweezers cannot steer reflective particles, or particles where the index of refraction is lower than (or for more sophisticated optical vortex holographic tweezers does not differ substantially from) that of the surrounding medium.). In this thesis, we address three specific aspects of this technology. First, we develop the control algorithms for steering multiple particles independently and validate our control techniques using simulations with realistic sources of initial position errors and system uncertainties. Second, we develop optimal path planning methods to efficiently steer particles between given initial and final positions. Third, we design high performance microfluidic devices that are capable of simultaneously steering five particles in experiment.
    URI
    http://hdl.handle.net/1903/11132
    Collections
    • Aerospace Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility