Show simple item record

Base Change for the Iwahori-Hecke Algebra of $GL_2$

dc.contributor.advisorHaines, Thomas Jen_US
dc.contributor.authorRay-Dulany, Walter Randolphen_US
dc.date.accessioned2010-10-07T06:14:14Z
dc.date.available2010-10-07T06:14:14Z
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1903/10963
dc.description.abstractLet F be a local non-Archimedean field of characteristic not equal to 2, let E/F be a finite unramified extension field, and let σ be a generator of Gal(E, F). Let f be an element of Z(H_{I_E}), the center of the Iwahori-Hecke algebra for GL2(E), and let b be the Iwahoric base change homomorphism from Z(H_{I_E}) to Z(H_{I_F} ), the center of the Iwahori-Hecke algebra for GL2(F) [8]. This paper proves the matching of the σ-twisted orbital integral over GL2(E) of f with the orbital integral over GL2(F) of bf. To do so, we compute the orbital and σ-twisted orbital integrals of the Bernstein functions z_μ. These integrals are computed by relating them to counting problems on the set of edges in the building for SL2. Surprisingly, the integrals are found to be somewhat independent of the conjugacy class over which one is integrating. The matching of the integrals follows from direct comparison of the results of these computations. The fundamental lemma proved here is an important ingredient in study of Shimura varieties with Iwahori level structure at a prime p [7].en_US
dc.titleBase Change for the Iwahori-Hecke Algebra of $GL_2$en_US
dc.typeDissertationen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.contributor.departmentMathematicsen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolledfundamental lemmaen_US
dc.subject.pquncontrolledGL_2en_US
dc.subject.pquncontrolledOrbital integralen_US
dc.subject.pquncontrolledtwisted orbital integralen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record