Show simple item record


dc.contributor.advisorMount, David Men_US
dc.contributor.authorCho, Minkyoungen_US
dc.description.abstractPoint pattern matching is a fundamental problem in computational geometry. For given a reference set and pattern set, the problem is to find a geometric transformation applied to the pattern set that minimizes some given distance measure with respect to the reference set. This problem has been heavily researched under various distance measures and error models. Point set similarity searching is variation of this problem in which a large database of point sets is given, and the task is to preprocess this database into a data structure so that, given a query point set, it is possible to rapidly find the nearest point set among elements of the database. Here, the term <italic>nearest</italic> is understood in above sense of pattern matching, where the elements of the database may be transformed to match the given query set. The approach presented here is to compute a low distortion embedding of the pattern matching problem into an (ideally) low dimensional metric space and then apply any standard algorithm for nearest neighbor searching over this metric space. This main focus of this dissertation is on two problems in the area of point pattern matching and searching algorithms: (i) improving the accuracy of alignment-based point pattern matching and (ii) computing low-distortion embeddings of point sets into vector spaces. For the first problem, new methods are presented for matching point sets based on alignments of small subsets of points. It is shown that these methods lead to better approximation bounds for alignment-based planar point pattern matching algorithms under the Hausdorff distance. Furthermore, it is shown that these approximation bounds are nearly the best achievable by alignment-based methods. For the second problem, results are presented for two different distance measures. First, point pattern similarity search under translation for point sets in multidimensional integer space is considered, where the distance function is the symmetric difference. A randomized embedding into real space under the L<sub>1</sub> metric is given. The algorithm achieves an expected distortion of O(log<super>2</super> n). Second, an algorithm is given for embedding R<super>d</super> under the Earth Mover's Distance (EMD) into multidimensional integer space under the symmetric difference distance. This embedding achieves a distortion of O(log D), where D is the diameter of the point set. Combining this with the above result implies that point pattern similarity search with translation under the EMD can be embedded in to real space in the L<sub>1</sub> metric with an expected distortion of O(log<super>2</super> n log D).en_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.contributor.departmentComputer Scienceen_US
dc.subject.pqcontrolledComputer Scienceen_US
dc.subject.pquncontrolledcomputational geometryen_US
dc.subject.pquncontrolledgeometric retrievalen_US
dc.subject.pquncontrolledimage registrationen_US
dc.subject.pquncontrolledpoint pattern matchingen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record