Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    COMPARISON OF INTERCONNECT FAILURES OF ELECTRONIC COMPONENTS MOUNTED ON FR-4 BOARDS WITH SN37PB AND SN3.0AG0.5CU SOLDERS UNDER RAPID LOADING CONDITIONS.

    Thumbnail
    View/Open
    Gregory_umd_0117E_11453.pdf (4.889Mb)
    No. of downloads: 1576

    Date
    2010
    Author
    Gregory, Patrice Belnora
    Advisor
    Barker, Donald B
    Metadata
    Show full item record
    Abstract
    Electronic circuit boards can experience rapid loading through shock or vibration events during their lives; these events can happen in transportation, manufacture, or in field conditions. Due to the lead-free migration, it is necessary to evaluate how this rapid loading affects the durability of a leading lead free solder alternative (Sn3.0Ag0.5Cu) assemblies as compared with traditional eutectic lead based solder Sn37Pb assemblies. A literature review showed that there is little agreement on the fatigue behavior of Sn37Pb solder assemblies and Sn3.0Ag0.5Cu solder assemblies subjected to rapid loading. To evaluate the failure behavior of Sn37Pb and Sn3.0Ag0.5Cu solder assemblies under rapid loading conditions, leadless chip resistors (LCR), ball grid arrays (BGA), small outline integrated circuits (SOIC), and small outline transistors (SOT) were subjected to four point bend tests via a servo-hydraulic testing machine at printed wiring board (PWB) strain rates greater than 0.1/s. The PWB strain was the metric used to evaluate the failures. The PBGAs and LCRs were examined with both Sn37Pb and Sn3.0Ag0.5Cu solders. There was no significant difference found in the resulting test data for the behavior of the two solder assembly types in the high cycle fatigue regime. PBGA assemblies with both solders were also evaluated at a higher strain rate, approximately 1/s, using drop testing. There was no discernable difference found between the assemblies as well as no difference in the failure rate of the PBGAs at this higher strain rate. The PWB strain was converted to an equivalent solder stress index using finite element analysis. This equivalent stress index value was used to compare the results from the LCR and BGA testing for Sn37Pb and Sn3.0Ag0.5Cu. Independently generated BGA data that differed with respect to many testing variables was adjusted and incorporated to this comparison. The resulting plot did not show any significant differences between the behaviors of the two solder assemblies under rapid loading outside of the ultra low cycle fatigue regime, where the assemblies with Sn37Pb solder outperformed the assemblies with SnAgCu solder.
    URI
    http://hdl.handle.net/1903/10806
    Collections
    • Mechanical Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility