Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A MULTISCALE MODEL FOR AN ATOMIC LAYER DEPOSITION PROCESS

    Thumbnail
    View/Open
    Dwivedi_umd_0117E_11194.pdf (3.496Mb)
    No. of downloads: 1185

    Date
    2010
    Author
    Dwivedi, Vivek Hari
    Advisor
    Adomaitis, Raymond A
    Metadata
    Show full item record
    Abstract
    Atomic layer deposition (ALD) is a deposition technique suitable for the con- trolled growth of thin films. During ALD, precursor gasses are supplied to the reactor in an alternating sequence producing individual atomic layers through self- limiting reactions. Thin films are grown conformally with atomic layer control over surfaces with topographical features. A very promising material system for ALD growth is aluminum oxide. Alu- minum oxide is highly desirable for both its physical and electronic characteristics. Aluminum oxide has a very high band gap (~ 9 ev) and a high dielectric constant (k ~ 9). The choice of precursors for aluminum oxide atomic layer deposition vary from aluminum halide, alkyl, and alkoxides for aluminum-containing molecules; for oxygen-containing molecules choices include oxygen, water, hydrogen peroxide and ozone. For this work a multiscale simulation is presented where aluminum oxide is deposited inside anodic aluminum oxide (AAO) pores for the purposes of tuning the pore diameter. Controlling the pore diameter is an import step in the conversion of AAO into nanostructered catalytic membranes (NCM). Shrinking the pore size to a desired radius allows for the control of the residence time for molecules entering the pore and a method for molecular filtration. Furthermore pore diameter control would allow for the optimization of precursor doses making this a green process. Inherently, the ALD of AAO is characterized by a slow and a faster time scale where film growth is on the order of minutes and hours and surface reactions are near instantaneous. Likewise there are two length scales: film thickness and composition on the order of nanometers and pore length on the order of microns. The surface growth is modeled in terms of a lattice Monte Carlo simulation while the diffusion of the precursor gas along the length of the pore is modeled as a Knudsen diffusion based transport model.
    URI
    http://hdl.handle.net/1903/10354
    Collections
    • Chemical and Biomolecular Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility