Show simple item record

Robust Trust Establishment in Decentralized Networks

dc.contributor.advisorArbaugh, Williamen_US
dc.contributor.authorSeng, Chuk-Yangen_US
dc.description.abstractThe advancement in networking technologies creates new opportunities for computer users to communicate and interact with one another. Very often, these interacting parties are strangers. A relevant concern for a user is whether to trust the other party in an interaction, especially if there are risks associated with the interaction. Reputation systems are proposed as a method to establish trust among strangers. In a reputation system, a user who exhibits good behavior continuously can build a good reputation. On the other hand, a user who exhibits malicious behavior will have a poor reputation. Trust can then be established based on the reputation ratings of a user. While many research efforts have demonstrated the effectiveness of reputation systems in various situations, the security of reputation systems is not well understood within the research community. In the context of trust establishment, the goal of an adversary is to gain trust. An adversary can appear to be trustworthy within a reputation system if the adversary has a good reputation. Unfortunately, there are plenty of methods that an adversary can use to achieve a good reputation. To make things worse, there may be ways for an attacker to gain an advantage that may not be known yet. As a result, understanding an adversary is a challenging problem. The difficulty of this problem can be witnessed by how researchers attempt to prove the security of their reputation systems. Most prove security by using simulations to demonstrate that their solutions are resilient to specific attacks. Unfortunately, they do not justify their choices of the attack scenarios, and more importantly, they do not demonstrate that their choices are sufficient to claim that their solutions are secure. In this dissertation, I focus on addressing the security of reputation systems in a decentralized Peer-to-Peer (P2P) network. To understand the problem, I define an abstract model for trust establishment. The model consists of several layers. Each layer corresponds to a component of trust establishment. This model serves as a common point of reference for defining security. The model can also be used as a framework for designing and implementing trust establishment methods. The modular design of the model can also allow existing methods to inter-operate. To address the security issues, I first provide the definition of security for trust establishment. Security is defined as a measure of robustness. Using this definition, I provide analytical techniques for examining the robustness of trust establishment methods. In particular, I show that in general, most reputation systems are not robust. The analytical results lead to a better understanding of the capabilities of the adversaries. Based on this understanding, I design a solution that improves the robustness of reputation systems by using accountability. The purpose of accountability is to encourage peers to behave responsibly as well as to provide disincentive for malicious behavior. The effectiveness of the solution is validated by using simulations. While simulations are commonly used by other research efforts to validate their trust establishment methods, their choices of simulation scenarios seem to be chosen in an ad hoc manner. In fact, many of these works do not justify their choices of simulation scenarios, and neither do they show that their choices are adequate. In this dissertation, the simulation scenarios are chosen based on the capabilities of the adversaries. The simulation results show that under certain conditions, accountability can improve the robustness of reputation systems.en_US
dc.titleRobust Trust Establishment in Decentralized Networksen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.contributor.departmentComputer Scienceen_US
dc.subject.pqcontrolledComputer Scienceen_US
dc.subject.pquncontrolledDecentralized Networksen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record