Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    INTERFACIAL SOLVATION AND EXCITED STATE PHOTOPHYSICAL PROPERTIES OF 7-AMINOCOUMARINS AT SILICA/LIQUID INTERFACES

    Thumbnail
    View/Open
    Roy_umd_0117E_11124.pdf (6.700Mb)
    No. of downloads: 1136

    Date
    2010
    Author
    Roy, Debjani
    Advisor
    Walker, Robert A
    Metadata
    Show full item record
    Abstract
    The properties of solutes adsorbed at interfaces can be very different compared to bulk solution limits. This thesis examines how polar, hydrophilic silica surfaces and different solvents systematically change a solute's equilibrium and dynamic solvation environment at solid/liquid interfaces. The primary tools used in these studies are steady state fluorescence spectroscopy and time correlated single photon counting (TCSPC) -a fluorescence method capable resolving fluorescence emission on the picosecond timescale. To sample adsorbed solutes, TCSPC experiments were carried out in total internal reflection (TIR) geometry. These studies used total of six different 7 aminocoumarin dyes to isolate the effects of molecular and electronic structure on solute photophysical behavior. Fluorescence lifetimes measured in the TIR geometry are compared to the lifetimes of coumarins in bulk solution using different solvents to infer interfacial polarity and excited state solute conformation and dynamics. Steady state emission experiments measuring the behavior of the coumarins adsorbed at silica surfaces from bulk methanol solutions show that all coumarins had a similar affinity &delta G <sub>ads</sub> &sim &minus 25-30 kJ/mole. Despite these similar adsorption energetics solute structure had a very pronounced effect on the tendency of solutes to aggregate and form multilayers. Our finding suggests that hydrogen bonding donating properties of the silica surface plays a dominant role in determining the interfacial behavior of these solutes. The silica surface also had pronounced effects on the time dependent emission of some solutes. In particular, the strong hydrogen bond donating properties of the silica surface inhibit formation of a planar, charge transfer state through hydrogen bond donation to the solute's amine group. A consequence of this interaction is that the time dependent emission from solutes adsorbed at the surface appears to be more similar to emission from solutes in nonpolar solvation environments. To test the role of solvent identity on the photophysical properties of adsorbed solutes, additional experiments were carried out with a nonpolar solvent (decane), a moderately polar solvent (n decanol) and a polar aprotic solvent (acetonitrile). The results from these studies demonstrated that interfacial solvation depends sensitively on a balance of competing forces including those between the solute and substrate, the solute and solvent and the surface and adjacent solvent.
    URI
    http://hdl.handle.net/1903/10293
    Collections
    • Chemistry & Biochemistry Theses and Dissertations
    • Physics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility