Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Visible Light Photorelease of Carboxylate Anions by Mediated Photoinduced Electron Transfer to Pyridinium-based Protecting Groups

    Thumbnail
    View/Open
    Borak_umd_0117E_10976.pdf (10.16Mb)
    No. of downloads: 777

    Date
    2009
    Author
    Borak, John Brian
    Advisor
    Falvey, Daniel E
    Metadata
    Show full item record
    Abstract
    The use of sensitized photoinduced electron transfer (PET) to trigger release of redox-active photoremovable protecting groups (PRPGs) allows a broad range of chromophores to be selected that absorb in difference wavelength ranges. Mediated electron transfer (MET) is particularly advantageous as sub-stoichiometric amounts of the often costly sensitizer (relative to the amount of protected substrate) can be combined with an excess amount of an inexpensive electron donor. Thus, the sensitizer acts as an electron shuttle between the donor and the protecting group to initiate release. The development of improved MET release systems using visible light as the trigger is the focus of the current work. The <italic>N</italic>-alkylpicolinium (NAP) group has demonstrated its utility as an aqueous-compatible PET-based PRPG, releasing protected substrates upon one electron reduction. Adaptation of MET PRPG release to visible light absorbing mediators began with employing ketocoumarin dyes that primarily form excited triplet states. These chromophores demonstrated high rates of release of NAP-protected carboxylates using sub-stoichiometric concentrations of mediator. Subsequently, nanomolar concentrations of gold nanoparticles were used to mediate electron transfer to NAP-protected compounds. This system exhibited rapid deprotection with very high release quantum efficiencies. In an effort to use highly stable visible-light-absorbing metal-centered dyes with modest redox properties, the NAP group has been synthetically modified to adjust its reduction potential to more positive values. Photolysis of solutions containing the protected substrate, a large excess of an electron donor, and substoichiometric amounts of the dye tris(bipyridyl)ruthenium(II) released the free carboxylates in high yields while photodegradation of the chromophore was minimal. To demonstrate the utility of the NAP group, a quasi-reversible photorheological fluid has been developed based on the formation and disruption of aqueous micelles. In solutions containing the surfactant cetyltrimethylammonium bromide, visible light photorelease of a carboxylate additive from the NAP-ester derivative induces a 10<super>5</super> increase in solution viscosity due to the formation of an interpenetrating micelle network. Subsequent irradiation of the viscoelastic fluid with UV light induces a cis-trans isomerization within the released carboxylate thereby disrupting the micelle network and decreasing solution viscosity by 10<super>2.5</super>.
    URI
    http://hdl.handle.net/1903/10001
    Collections
    • Chemistry & Biochemistry Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility