School of Public Health
Permanent URI for this communityhttp://hdl.handle.net/1903/1633
The collections in this community comprise faculty research works, as well as graduate theses and dissertations.
Note: Prior to July 1, 2007, the School of Public Health was named the College of Health & Human Performance.
Browse
3 results
Search Results
Item Development and Limitations of Exposure Biomarkers to Dietary Contaminants Mycotoxins(MDPI, 2021-04-28) Turner, Paul C.; Snyder, Jessica A.Mycotoxins are toxic secondary fungal metabolites that frequently contaminate cereal crops globally, presenting exposure hazards to humans and livestock in many settings. The heterogeneous distribution of mycotoxins in food restricts the usefulness of food sampling and intake estimates for epidemiological studies, making validated exposure biomarkers better tools for informing epidemiological investigations. While biomarkers of exposure have served important roles for understanding the public health impact of mycotoxins such as aflatoxins (AF), the science of biomarkers must continue advancing to allow for better understanding of mycotoxins’ roles in the etiology of disease and the effectiveness of mitigation strategies. This review will discuss mycotoxin biomarker development approaches over several decades for four toxins of significant public health concerns, AFs, fumonisins (FB), deoxynivalenol (DON), and ochratoxin A (OTA). This review will also highlight some knowledge gaps, key needs and potential pitfalls in mycotoxin biomarker interpretation.Item Organophosphorous pesticide breakdown products in house dust and children’s urine.(2012) Quiros-Alcala, Lesliam; Bradman, Asa; Smith, Kimberly; Weerasekera, Gayanga; Odetokun, Martins; Barr, Dana B.; Nishioka, M; Castorina, R; Hubbard, AE; Nicas, M; Hammond, SK; McKone, TE; Eskenazi, BHuman exposure to preformed dialkylphosphates (DAPs) in food or the environment may affect the reliability of DAP urinary metabolites as biomarkers of organophosphate (OP) pesticide exposure. We conducted a study to investigate the presence of DAPs in indoor residential environments and their association with children’s urinary DAP levels. We collected dust samples from homes in farmworker and urban communities (40 homes total, n=79 samples) and up to two urine samples from resident children ages 3-6 years. We measured six DAPs in all samples and eight DAP-devolving OP pesticides in a subset of dust samples (n=54). DAPs were detected in dust with diethylphosphate (DEP) being the most frequently detected (>=60%); detection frequencies for other DAPs were <=50%. DEP dust concentrations did not significantly differ between communities, nor were concentrations significantly correlated with concentrations of chlorpyrifos and diazinon, the most frequently detected diethyl-OP pesticides (Spearman r=0.41 to 0.38, P>0.05). Detection of DEP, chlorpyrifos, or diazinon, was not associated with DEP and/or DEPþdiethylthiophosphate detection in urine (Kappa coefficients=-0.33 to 0.16). Finally, estimated nondietary ingestion intake from DEP in dust was found to be <=5% of the dose calculated from DEP levels in urine, suggesting that ingestion of dust is not a significant source of DAPs in urine if they are excreted unchanged.Item Variability of organophosphorous pesticide metabolite levels in spot and 24-hr urine samples collected from young children during 1 week.(2013-01) Bradman, Asa; Kogut, Katherine; Eisen, Ellen A.; Jewell, Nicholas; Quiros-Alcala, Lesliam; Castorina, Rosemary; Chevrier, Jonathan; Holland, Nina T.; Barr, Dana B.; Kavanagh-Baird, Gerry; Eskenazi, BrendaBackground: Dialkyl phosphate (DAP) metabolites in spot urine samples are frequently used to characterize children’s exposures to organophosphorous (OP) pesticides. However, variable exposure and short biological half-lives of OP pesticides could result in highly variable measurements, leading to exposure misclassification. Objective: We examined within- and between-child variability in DAP metabolites in urine samples collected during 1 week. Methods: We collected spot urine samples over 7 consecutive days from 25 children (3–6 years of age). On two of the days, we collected 24-hr voids. We assessed the reproducibility of urinary DAP metabolite concentrations and evaluated the sensitivity and specificity of spot urine samples as predictors of high (top 20%) or elevated (top 40%) weekly average DAP metabolite concentrations. Results: Within-child variance exceeded between-child variance by a factor of two to eight, depending on metabolite grouping. Although total DAP concentrations in single spot urine samples were moderately to strongly associated with concentrations in same-day 24-hr samples (r ≈ 0.6–0.8, p < 0.01), concentrations in spot samples collected > 1 day apart and in 24-hr samples collected 3 days apart were weakly correlated (r ≈ –0.21 to 0.38). Single spot samples predicted high (top 20%) and elevated (top 40%) full-week average total DAP excretion with only moderate sensitivity (≈ 0.52 and ≈ 0.67, respectively) but relatively high specificity (≈ 0.88 and ≈ 0.78, respectively). Conclusions: The high variability we observed in children’s DAP metabolite concentrations suggests that single-day urine samples provide only a brief snapshot of exposure. Sensitivity analyses suggest that classification of cumulative OP exposure based on spot samples is prone to type 2 classification errors.