School of Public Health

Permanent URI for this communityhttp://hdl.handle.net/1903/1633

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Note: Prior to July 1, 2007, the School of Public Health was named the College of Health & Human Performance.

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Item
    Both parents matter: a national-scale analysis of parental race/ethnicity, disparities in prenatal PM2.5 exposures and related impacts on birth outcomes
    (Springer Nature, 2022-05-06) Payne-Sturges, Devon C.; Puett, Robin; Cory-Slechta, Deborah A.
    Most U.S. studies that report racial/ethnic disparities in increased risk of low birth weight associated with air pollution exposures have been conducted in California or northeastern states and/or urban areas, limiting generalizability of study results. Few of these studies have examined maternal racial/ethnic groups other than Non-Hispanic Black, non-Hispanic White and Hispanic, nor have they included paternal race. We aimed to examine the independent effects of PM2.5 on birth weight among a nationally representative sample of U.S. singleton infants and how both maternal and paternal race/ethnicity modify relationships between prenatal PM2.5 exposures and birth outcomes. We used data from the Early Childhood Longitudinal Study, Birth Cohort (ECLS–B), a longitudinal nationally representative cohort of 10,700 U.S. children born in 2001, which we linked to U.S.EPA’s Community Multi-scale Air Quality (CMAQ)-derived predicted daily PM2.5 concentrations at the centroid of each Census Bureau Zip Code Tabulation Area (ZCTA) for maternal residences. We examined relationships between term birthweight (TBW), term low birthweight rate (TLBW) and gestational PM2.5 pollutant using multivariate regression models. Effect modification of air pollution exposures on birth outcomes by maternal and paternal race was evaluated using stratified models. All analyses were conducted with sample weights to provide national-scale estimates. The majority of mothers were White (61%). Fourteen percent of mothers identified as Black, 21% as Hispanic, 3% Asian American and Pacific Islander (AAPI) and 1% American Indian and Alaskan Native (AIAN). Fathers were also racially/ethnically diverse with 55% identified as White Non-Hispanic, 10% as Black Non-Hispanic, 19% as Hispanic, 3% as AAPI and 1% as AIAN. Results from the chi-square and ANOVA tests of significance for racial/ethnic differences indicate disparities in prenatal exposures and birth outcomes by both maternal and paternal race/ethnicity. Prenatal PM2.5 was associated with reduced birthweights during second and third trimester and over the entire gestational period in adjusted regression models, although results did not reach statistical significance. In models stratified by maternal race and paternal race, one unit increase in PM2.5 was statistically significantly associated with lower birthweights among AAPI mothers, -5.6 g (95% CI:-10.3, -1.0 g) and AAPI fathers, -7.6 g (95% CI: -13.1, -2.1 g) during 3rd trimester and among births where father’s race was not reported, -14.2 g (95% CI: -24.0, -4.4 g). These data suggest that paternal characteristics should be used, in addition to maternal characteristics, to describe the risks of adverse birth outcomes. Additionally, our study suggests that serious consideration should be given to investigating environmental and social mechanisms, such as air pollution exposures, as potential contributors to disparities in birth outcomes among AAPI populations.
  • Thumbnail Image
    Item
    Joint effects of ethnic enclave residence and ambient volatile organic compounds exposure on risk of gestational diabetes mellitus among Asian/Pacific Islander women in the United States
    (Springer Nature, 2021-05-08) Williams, Andrew D.; Ha, Sandie; Shenassa, Edmond; Messer, Lynne C.; Kanner, Jenna; Mendola, Pauline
    Asian/Pacific Islander (API) communities in the United States often reside in metropolitan areas with distinct social and environmental attributes. Residence in an ethnic enclave, a socially distinct area, is associated with lower gestational diabetes mellitus (GDM) risk, yet exposure to high levels of air pollution, including volatile organic compounds (VOCS), is associated with increased GDM risk. We examined the joint effects of ethnic enclaves and VOCs to better understand GDM risk among API women, the group with the highest prevalence of GDM. We examined 9069 API births in the Consortium on Safe Labor (19 hospitals, 2002–2008). API ethnic enclaves were defined as areas ≥66th percentile for percent API residents, dissimilarity (geographic dispersal of API and White residents), and isolation (degree that API individuals interact with another API individual). High levels of 14 volatile organic compounds (VOC) were defined as ≥75th percentile. Four joint categories were created for each VOC: Low VOC/Enclave (reference group), Low VOC/No Enclave, High VOC/Enclave, High VOC/No Enclave. GDM was reported in medical records. Hierarchical logistic regression estimated odds ratios (OR) and 95% confidence intervals (95%CI) between joint exposures and GDM, adjusted for maternal factors and area-level poverty. Risk was estimated for 3-months preconception and first trimester exposures. Enclave residence was associated with lower GDM risk regardless of VOC exposure. Preconception benzene exposure was associated with increased risk when women resided outside enclaves [High VOC/No Enclave (OR:3.45, 95%CI:1.77,6.72)], and the effect was somewhat mitigated within enclaves, [High VOC/Enclave (OR:2.07, 95%:1.09,3.94)]. Risks were similar for 12 of 14 VOCs during preconception and 10 of 14 during the first trimester. API residence in non-enclave areas is associated with higher GDM risk, regardless of VOC level. Ethnic enclave residence may mitigate effects of VOC exposure, perhaps due to lower stress levels. The potential benefit of ethnic enclaves warrants further study.
  • Thumbnail Image
    Item
    The association of long-term exposure to PM2.5 on all-cause mortality in the Nurses’ Health Study and the impact of measurement-error correction
    (Springer Nature, 2015-05-01) Hart, Jaime E; Liao, Xiaomei; Hong, Biling; Puett, Robin C; Yanosky, Jeff D; Suh, Helen; Kioumourtzoglou, Marianthi-Anna; Spiegelman, Donna; Laden, Francine
    Long-term exposure to particulate matter less than 2.5 μm in diameter (PM2.5) has been consistently associated with risk of all-cause mortality. The methods used to assess exposure, such as area averages, nearest monitor values, land use regressions, and spatio-temporal models in these studies are subject to measurement error. However, to date, no study has attempted to incorporate adjustment for measurement error into a long-term study of the effects of air pollution on mortality. We followed 108,767 members of the Nurses’ Health Study (NHS) 2000–2006 and identified all deaths. Biennial mailed questionnaires provided a detailed residential address history and updated information on potential confounders. Time-varying average PM2.5 in the previous 12-months was assigned based on residential address and was predicted from either spatio-temporal prediction models or as concentrations measured at the nearest USEPA monitor. Information on the relationships of personal exposure to PM2.5 of ambient origin with spatio-temporal predicted and nearest monitor PM2.5 was available from five previous validation studies. Time-varying Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95 percent confidence intervals (95%CI) for each 10 μg/m3 increase in PM2.5. Risk-set regression calibration was used to adjust estimates for measurement error. Increasing exposure to PM2.5 was associated with an increased risk of mortality, and results were similar regardless of the method chosen for exposure assessment. Specifically, the multivariable adjusted HRs for each 10 μg/m3 increase in 12-month average PM2.5 from spatio-temporal prediction models were 1.13 (95%CI:1.05, 1.22) and 1.12 (95%CI:1.05, 1.21) for concentrations at the nearest EPA monitoring location. Adjustment for measurement error increased the magnitude of the HRs 4-10% and led to wider CIs (HR = 1.18; 95%CI: 1.02, 1.36 for each 10 μg/m3 increase in PM2.5 from the spatio-temporal models and HR = 1.22; 95%CI: 1.02, 1.45 from the nearest monitor estimates). These findings support the large body of literature on the adverse effects of PM2.5, and suggest that adjustment for measurement error be considered in future studies where possible.
  • Thumbnail Image
    Item
    Intracranial tumors of the central nervous system and air pollution – a nationwide case-control study from Denmark
    (Springer Nature, 2020-07-08) Poulsen, Aslak Harbo; Hvidtfeldt, Ulla Arthur; Sørensen, Mette; Puett, Robin; Ketzel, Matthias; Brandt, Jørgen; Geels, Camilla; Christensen, Jesper H.; Raaschou-Nielsen, Ole
    Inconclusive evidence has suggested a possible link between air pollution and central nervous system (CNS) tumors. We investigated a range of air pollutants in relation to types of CNS tumors. We identified all (n = 21,057) intracranial tumors in brain, meninges and cranial nerves diagnosed in Denmark between 1989 and 2014 and matched controls on age, sex and year of birth. We established personal 10-year mean residential outdoor exposure to particulate matter < 2.5 μm (PM2.5), nitrous oxides (NOX), primary emitted black carbon (BC) and ozone. We used conditional logistic regression to calculate odds ratios (OR) linearly (per interquartile range (IQR)) and categorically. We accounted for personal income, employment, marital status, use of medication as well as socio-demographic conditions at area level. Malignant tumors of the intracranial CNS was associated with BC (OR: 1.034, 95%CI: 1.005–1.065 per IQR. For NOx the OR per IQR was 1.026 (95%CI: 0.998–1.056). For malignant non-glioma tumors of the brain we found associations with PM2.5 (OR: 1.267, 95%CI: 1.053–1.524 per IQR), BC (OR: 1.049, 95%CI: 0.996–1.106) and NOx (OR: 1.051, 95% CI: 0.996–1.110). Our results suggest that air pollution is associated with malignant intracranial CNS tumors and malignant non-glioma of the brain. However, additional studies are needed.
  • Thumbnail Image
    Item
    Long-Term Exposure to Ambient Air Pollution and Type 2 Diabetes in Adults
    (Current Epidemiology Reports (Springer Link), 2019-02-09) Puett, Robin C.; Quirós-Alcalá, Lesliam; Montresor-López, Jessica A; Tchangalova, Nedelina; Dutta, Anindita; Payne-Sturges, Devon; Yanosky, Jeff D.
    PURPOSE OF REVIEW We identified 24 publications from January 2010 until September 2018 in the peer-reviewed literature addressing the relationship of long-term air pollution exposures and type 2 diabetes-related morbidity and mortality among adults. We examine key methodological issues, synthesize findings, and address study strengths and limitations. We also discuss biological mechanisms, policy implications, and future research needed to address existing knowledge gaps. RECENT FINDINGS In general, the studies included in this review employed rigorous methodology with large sample sizes, appropriate study designs to maximize available cohort study or administrative data sources, and exposure modeling that accounted for spatial patterns in air pollution levels. Overall, studies suggested increased risks of type 2 diabetes-related morbidity and mortality among adults associated with increased exposures; however, findings were not uniformly positive nor statistically significant. SUMMARY Current research is particularly limited regarding the biological mechanisms involved and the relationship between ozone and diabetes. Additionally, more research is needed to distinguish clearly the effects of nitrogen oxides from those of other pollutants and to identify potential subpopulations with greater susceptibility for certain pollutant exposures. A better understanding of the potential link between long-term ambient air pollution exposures and type 2 diabetes may provide opportunities for the reduction of health risks and inform future interventions for environmental protection and diabetes management.
  • Thumbnail Image
    Item
    Exposure to Ambient Air Pollution and Correlates of Cardiovascular Disease among Youth with Type 1 Diabetes
    (2019) Montresor-Lopez, Jessica Anne; Puett, Robin C; Maryland Institute for Applied Environmental Health; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Air pollution from traffic-related sources is associated with cardiovascular disease (CVD), potentially through changes in systemic inflammatory responses, vascular function and oxidative stress leading to atherosclerosis, thrombosis or endothelial dysfunction. Individuals with type 1 diabetes (T1D) have a greater risk of CVD-related morbidity and mortality than the general population, and they may be more susceptible to the effects of air pollution on CVD. Although these increased risks begin during childhood, very few studies have assessed the impact of air pollution on children and youth with T1D. This dissertation directly addresses gaps in the epidemiologic evidence by: 1) evaluating the relationship of short-term exposures to traffic-related air pollutants with pulse wave velocity (PWV), a measure of arterial stiffness, 2) assessing the effects of changes in air pollution exposures on changes in inflammatory biomarkers, including C-reactive protein, fibrinogen and interleukin-6 (IL-6), and 3) examining the relationship of long-term exposures to traffic-related air pollution with allostatic load (AL), a measure of cumulative biological risk, among a cohort of youth with T1D. Data were obtained from the SEARCH for Diabetes in Youth (SEARCH) study. SEARCH was initiated in 2000 and includes a diverse population of US youth diagnosed with diabetes prior to age 20 years. Anthropometric and laboratory measures were taken at SEARCH study visits, and standardized questionnaires were used to collect information on important covariates. Air pollution exposures were estimated using spatio-temporal models and assigned to residential addresses for each participant. In the first study, we identified a significant association between increased exposure to PM2.5 on the day of the examination with higher PWV using generalized linear models adjusted for lifestyle and demographic characteristics. In the second analysis, we found consistent positive effects of increases in PM2.5 over the week prior to the examination with IL-6 using longitudinal mixed models. In the third study, no significant associations were observed for monthly and annual PM2.5 exposures or proximity to major roadways with AL in fully adjusted linear mixed models. However, effects differed by race/ethnicity and gender. Overall, this research indicates that youth with T1D may be at higher risk for air pollution-related cardiovascular impacts.