School of Public Health

Permanent URI for this communityhttp://hdl.handle.net/1903/1633

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Note: Prior to July 1, 2007, the School of Public Health was named the College of Health & Human Performance.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Census Tract Food Tweets and Chronic Disease Outcomes in the U.S., 2015–2018
    (MDPI, 2019-03-18) Huang, Yuru; Huang, Dina; Nguyen, Quynh C.
    There is a growing recognition of social media data as being useful for understanding local area patterns. In this study, we sought to utilize geotagged tweets—specifically, the frequency and type of food mentions—to understand the neighborhood food environment and the social modeling of food behavior. Additionally, we examined associations between aggregated food-related tweet characteristics and prevalent chronic health outcomes at the census tract level. We used a Twitter streaming application programming interface (API) to continuously collect ~1% random sample of public tweets in the United States. A total of 4,785,104 geotagged food tweets from 71,844 census tracts were collected from April 2015 to May 2018. We obtained census tract chronic disease outcomes from the CDC 500 Cities Project. We investigated associations between Twitter-derived food variables and chronic outcomes (obesity, diabetes and high blood pressure) using the median regression. Census tracts with higher average calories per tweet, less frequent healthy food mentions, and a higher percentage of food tweets about fast food had higher obesity and hypertension prevalence. Twitter-derived food variables were not predictive of diabetes prevalence. Food-related tweets can be leveraged to help characterize the neighborhood social and food environment, which in turn are linked with community levels of obesity and hypertension.
  • Thumbnail Image
    Item
    Using 164 Million Google Street View Images to Derive Built Environment Predictors of COVID-19 Cases
    (MDPI, 2020-09-01) Nguyen, Quynh C.; Huang, Yuru; Kumar, Abhinav; Duan, Haoshu; Keralis, Jessica M.; Dwivedi, Pallavi; Meng, Hsien-Wen; Brunisholz, Kimberly D.; Jay, Jonathan; Javanmardi, Mehran; Tasdizen, Tolga
    The spread of COVID-19 is not evenly distributed. Neighborhood environments may structure risks and resources that produce COVID-19 disparities. Neighborhood built environments that allow greater flow of people into an area or impede social distancing practices may increase residents’ risk for contracting the virus. We leveraged Google Street View (GSV) images and computer vision to detect built environment features (presence of a crosswalk, non-single family home, single-lane roads, dilapidated building and visible wires). We utilized Poisson regression models to determine associations of built environment characteristics with COVID-19 cases. Indicators of mixed land use (non-single family home), walkability (sidewalks), and physical disorder (dilapidated buildings and visible wires) were connected with higher COVID-19 cases. Indicators of lower urban development (single lane roads and green streets) were connected with fewer COVID-19 cases. Percent black and percent with less than a high school education were associated with more COVID-19 cases. Our findings suggest that built environment characteristics can help characterize community-level COVID-19 risk. Sociodemographic disparities also highlight differential COVID-19 risk across groups of people. Computer vision and big data image sources make national studies of built environment effects on COVID-19 risk possible, to inform local area decision-making.
  • Thumbnail Image
    Item
    Census Tract Food Tweets and Chronic Disease Outcomes in the U.S., 2015–2018
    (MDPI, 2019-03-18) Huang, Yuru; Huang, Dina; Nguyen, Quynh C.
    There is a growing recognition of social media data as being useful for understanding local area patterns. In this study, we sought to utilize geotagged tweets—specifically, the frequency and type of food mentions—to understand the neighborhood food environment and the social modeling of food behavior. Additionally, we examined associations between aggregated food-related tweet characteristics and prevalent chronic health outcomes at the census tract level. We used a Twitter streaming application programming interface (API) to continuously collect ~1% random sample of public tweets in the United States. A total of 4,785,104 geotagged food tweets from 71,844 census tracts were collected from April 2015 to May 2018. We obtained census tract chronic disease outcomes from the CDC 500 Cities Project. We investigated associations between Twitter-derived food variables and chronic outcomes (obesity, diabetes and high blood pressure) using the median regression. Census tracts with higher average calories per tweet, less frequent healthy food mentions, and a higher percentage of food tweets about fast food had higher obesity and hypertension prevalence. Twitter-derived food variables were not predictive of diabetes prevalence. Food-related tweets can be leveraged to help characterize the neighborhood social and food environment, which in turn are linked with community levels of obesity and hypertension.