School of Public Health
Permanent URI for this communityhttp://hdl.handle.net/1903/1633
The collections in this community comprise faculty research works, as well as graduate theses and dissertations.
Note: Prior to July 1, 2007, the School of Public Health was named the College of Health & Human Performance.
Browse
2 results
Search Results
Item Examining Consumer Product Use And Phthalate Exposure Among Vulnerable Populations(2023) Boyle, Meleah; Quirós-Alcalá, Lesliam; Maryland Institute for Applied Environmental Health; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)One in 13 Americans have asthma, and higher rates have been reported among women and Black children.1 In addition, hairdressers who are exposed to chemicals through products used on themselves and their clients frequently report respiratory symptoms and conditions.2–10 Limited studies indicate that chemicals in personal care and consumer products (PCP) may impact respiratory health.11–14 The goal of this dissertation is to describe PCP use and exposures to recognized and suspected respiratory irritants (phthalates) among vulnerable populations who may experience disparate exposures. The aims are to: 1) characterize PCP use among 110 children with asthma, 2) examine associations between PCP use and asthma morbidity among 110 children with asthma, and 3) characterize concentrations and exposure determinants to phthalate metabolites in post-shift urine samples among 23 female hairdressers and 17 female office workers. In aim 1, participants were majority Black (87%), males (56%), and aged 8-11 years (66%). Adolescents (12-17 years) and females reported more frequent use of hair, face, and body products compared to children (8-11 years) and males. Participants used chemical treatments on their hair as young as 4 years and females 11-16 years used feminine wipes, spray, and regular deodorant in the genital area. For aim 2, use of aerosol products, hair products, and nail polish were positively associated with maximal symptom days [number of aerosol products (aOR: 1.36; CI: 1.17, 1.59), hairspray (aOR: 1.63; CI: 1.14, 2.33), perfume (aOR: 1.40; CI: 1.11,1.77); shampoo (aOR: 1.34; CI: 1.05,1.73), hair sheen (aOR: 1.41; CI: 1.00, 2.00), nail polish (aOR: 2.42; CI: 1.72, 3.41)] among children with asthma. For Aim 3, the geometric mean (GM) for monoethyl phthalate (MEP) was 10 times higher among hairdressers (161.4 ng/mL) than office workers (15.3 ng/mL). Hairdressers who provided chemical services had higher GM MEP concentrations than those who did not: texturizing (200.2 vs. 115.4 ng/mL), relaxing (181.6 vs. 92.1 ng/mL), bleaching (182.3 vs. 71.6 ng/mL), hair color (171.9 vs. 83.2 ng/mL), and Brazilian blowout (181.4 vs. 134.6 ng/mL). Hairdressers who provided natural services had lower GM MEP concentrations than those who did not: twists (129.1 vs. 215.8 ng/mL), sister locs/locs (86.0 vs. 241.9 ng/mL), and afros (94.7 vs. 203.9 ng/mL). While larger studies are needed, this dissertation provides new data on PCP use and phthalate exposure among Black children and hairdressers.Item Monitoring and Assessment of Residential Exposure to Noise Associated with Natural Gas Compressor Stations in West Virginia(2014) Boyle, Meleah; Sapkota, Amy R; Maryland Institute for Applied Environmental Health; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Noise is a growing concern for residents living near natural gas compressor stations. This study monitored and evaluated residential noise exposure associated with living near natural gas compressor stations in West Virginia. Short-term outdoor measurements (20 min) and medium-term (24-hour) indoor and outdoor measurements were collected at homes located near compressor stations. The average sound equivalent was calculated using logarithmic averages and stratified by distance from compressor station, time of day, and location. Average short-term noise levels were 61.43 dBA (45.3 to 76.1 dBA); average 24-hour noise levels were 60.20 dBA (35.3 to 94.8 dBA). Average noise levels at control homes were 51.40 dBA, with 45.02 dBA indoors and 54.03 dBA outdoors. Average noise levels at homes near compressor stations were 8.7 dBA higher, with a 16.25 dBA difference indoors and a 4.3 dBA difference outdoors. Results indicate that living near a natural gas compressor station may increase environmental noise exposure.