Environmental Science & Technology

Permanent URI for this communityhttp://hdl.handle.net/1903/2216

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Condition-Specific Competitive Effects of the Invasive Mosquito Aedes albopictus on the Resident Culex pipiens among Different Urban Container Habitats May Explain Their Coexistence in the Field
    (MDPI, 2021-11-04) Leisnham, Paul T.; LaDeau, Shannon L.; Saunders, Megan E. M.; Villena, Oswaldo C.
    Condition-specific competition, when environmental conditions alter the outcome of competition, can foster the persistence of resident species after the invasion of a competitively superior invader. We test whether condition-specific competition can facilitate the areawide persistence of the resident and principal West Nile virus vector mosquito Culex pipiens with the competitively superior invasive Aedes albopictus in water from different urban container habitats. (2) Methods: We tested the effects of manipulated numbers of A. albopictus on C. pipiens’ survival and development in water collected from common functional and discarded containers in Baltimore, MD, USA. The experiment was conducted with typical numbers of larvae found in field surveys of C. pipiens and A. albopictus and container water quality. (3) Results: We found increased densities of A. albopictus negatively affected the survivorship and development of C. pipiens in water from discarded containers but had little effect in water from functional containers. This finding was driven by water from trash cans, which allowed consistently higher C. pipiens’ survival and development and had greater mean ammonia and nitrate concentrations that can promote microbial food than other container types. (4) Conclusions: These results suggest that the contents of different urban containers alter the effects of invasive A. albopictus competition on resident C. pipiens, that trash cans, in particular, facilitate the persistence of C. pipiens, and that there could be implications for West Nile virus risk as a result.
  • Thumbnail Image
    Item
    The Role of Tire Leachate in Condition-Specific Competition and the Persistence of a Resident Mosquito from a Competitively Superior Invader
    (MDPI, 2022-10-22) Villena, Oswaldo C.; Sullivan, Joseph H.; Landa, Edward R.; Yarwood, Stephanie A.; Torrents, Alba; Zhang, Aijun; Leisnham, Paul T.
    (1) Background: Condition-specific competition, when the outcome of competition varies with abiotic conditions, can facilitate species coexistence in spatially or temporally variable environments. Discarded vehicle tires degrade to leach contaminants into collected rainwater that provide habitats for competing mosquito species. We tested the hypothesis that more highly degraded tires that contain greater tire leachate alters interspecific mosquito competition to produce a condition-specific advantage for the resident, Culex pipiens, by altering the outcome of competition with the competitively superior invasive Aedes albopictus. (2) Methods: In a competition trial, varying densities of newly hatched Ae. albopictus and Cx. pipiens larvae were added to tires that had been exposed to three different ultraviolet (UV)-B conditions that mimicked full-sun, shade, or no UV-B conditions in the field. We also measured Cx. pipiens and Ae. albopictus oviposition preference among four treatments with varying tire leachate (high and low) and resources (high and low) amounts to determine if adult gravid females avoided habitats with higher tire leachate. (3) Results: We found stronger competitive effects of Cx. pipiens on the population performance and survival of Ae. albopictus in tires exposed to shade and full-sun conditions that had higher concentrations of contaminants. Further, zinc concentration was higher in emergent adults of Ae. albopictus than Cx. pipiens. Oviposition by these species was similar between tire leachate treatments but not by resource amount. (4) Conclusions: These results suggest that degraded tires with higher tire leachate may promote condition-specific competition by reducing the competitive advantage of invasive Ae. albopictus over resident Cx. pipiens and, combined with Cx. pipiens’ preferential oviposition in higher resource sites, contribute to the persistence of the resident species.
  • Thumbnail Image
    Item
    The Role of Tire Leachate in Condition-specific Competition and the Persistence of a Resident Mosquito from a Competitively Superior Invader
    (MDPI, 2022-10-22) Villena, Oswaldo C.; Sullivan, Joseph H.; Landa, Edward R.; Yarwood, Stephanie A.; Torrents, Alba; Zhang, Aijun; Leisnham, Paul T.
    (1) Background: Condition-specific competition, when the outcome of competition varies with abiotic conditions, can facilitate species coexistence in spatially or temporally variable environments. Discarded vehicle tires degrade to leach contaminants into collected rainwater that provide habitats for competing mosquito species. We tested the hypothesis that more highly degraded tires that contain greater tire leachate alters interspecific mosquito competition to produce a conditionspecific advantage for the resident, Culex pipiens, by altering the outcome of competition with the competitively superior invasive Aedes albopictus. (2) Methods: In a competition trial, varying densities of newly hatched Ae. albopictus and Cx. pipiens larvae were added to tires that had been exposed to three different ultraviolet (UV)-B conditions that mimicked full-sun, shade, or no UV-B conditions in the field. We also measured Cx. pipiens and Ae. albopictus oviposition preference among four treatments with varying tire leachate (high and low) and resources (high and low) amounts to determine if adult gravid females avoided habitats with higher tire leachate. (3) Results: We found stronger competitive effects of Cx. pipiens on the population performance and survival of Ae. albopictus in tires exposed to shade and full-sun conditions that had higher concentrations of contaminants. Further, zinc concentration was higher in emergent adults of Ae. albopictus than Cx. pipiens. Oviposition by these species was similar between tire leachate treatments but not by resource amount. (4) Conclusions: These results suggest that degraded tires with higher tire leachate may promote condition-specific competition by reducing the competitive advantage of invasive Ae. albopictus over resident Cx. pipiens and, combined with Cx. pipiens’ preferential oviposition in higher resource sites, contribute to the persistence of the resident species.