Geography

Permanent URI for this communityhttp://hdl.handle.net/1903/2242

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Calculation of the Angular Radiance Distribution for a Coupled Atmosphere and Canopy
    (Institute of Electrical and Electronics Engineers, 1993-03) Liang, Shunlin; Strahler, Alan H.
    The radiative transfer equations for a coupled atmosphere and canopy are solved numerically by an improved Gause-Seidel iteration algorithm. The radiation field is decomposed into three components: unscattered sunlight, single scattering, and multiple scattering radiance for which the corresponding equations and boundary conditions are set up and their analytical or iterational solutions are explicitly derived. The classic Guass-Seidel algorithm has been widely applied in atomospheric research. This is its first application for calculating the multiple scattering radiance of a coupled atmosphere and canopy. This algorithm enables us to obtain the internal radiation field as well as radiances at boundaries. Any form of bidirectional reflectance distribution function (BRDF) as a boundary condition can be easily incorporated into the iteration procedure. The hotspot effect of the canopy is accommodated by means of the modification of the extiniction coefficients of upward single scattering radiation and unscatteered sunlight using the formulation of Nilson and Kuusk. To reduce the computation for the case of large optical thickness, an improved iteration formula is derived to speed convergence. The upwelling radiances have been evaluated for different atmospheric conditions, leaf area index (LAI), leaf angle distribution (LAD), leaf size and so on. The formulation presented in this paper is also well suited to analyze the relative magnitude of multiple scattering radiance and single scattering radiance in both the visible and near infrared regions.
  • Thumbnail Image
    Item
    Hyperdiffusion, maximum entropy production, and the simulated equator-pole temperature gradient in an atmospheric general circulation model
    (2005-01-10T19:47:03Z) Kleidon, Axel
    Hyperdiffusion is used in atmospheric General Circulation Models to account for turbulent dissipation at subgrid scale and its intensity affects the efficiency of poleward heat transport by the atmospheric circulation. We perform sensitivity simulations with a dynamic-core GCM to investigate the effects of different intensities of hyperdiffusion and different model resolutions on the simulated equator-pole temperature gradient. We examine the different simulations using entropy production as a measure of baroclinic activity and show that there is a maximum in entropy production. In comparison to the climate at a state of maximum entropy production, every other simulated climate at a given resolution leads to an increased equator-pole temperature gradient. We then demonstrate that maximum entropy production can be used to tune low-resolution models to closely resemble the simulated climate of a high-resolution simulation. We conclude that tuning a GCM to a state of maximum entropy production is an efficient tool to tune low-resolution climate system models to adequately simulate the equator-pole temperature gradient.