Geography
Permanent URI for this communityhttp://hdl.handle.net/1903/2242
Browse
2 results
Search Results
Item Impact of the Revisit of Thermal Infrared Remote Sensing Observations on Evapotranspiration Uncertainty—A Sensitivity Study Using AmeriFlux Data(MDPI, 2019-03-08) Guillevic, Pierre C.; Olioso, Albert; Hook, Simon J.; Fisher, Joshua B.; Lagouarde, Jean-Pierre; Vermote, Eric F.Thermal infrared remote sensing observations have been widely used to provide useful information on surface energy and water stress for estimating evapotranspiration (ET). However, the revisit time of current high spatial resolution (<100 m) thermal infrared remote sensing systems, sixteen days for Landsat for example, can be insufficient to reliably derive ET information for water resources management. We used in situ ET measurements from multiple Ameriflux sites to (1) evaluate different scaling methods that are commonly used to derive daytime ET estimates from time-of-day observations; and (2) quantify the impact of different revisit times on ET estimates at monthly and seasonal time scales. The scaling method based on a constant evaporative ratio between ET and the top-of-atmosphere solar radiation provided slightly better results than methods using the available energy, the surface solar radiation or the potential ET as scaling reference fluxes. On average, revisit time periods of 2, 4, 8 and 16 days resulted in ET uncertainties of 0.37, 0.55, 0.73 and 0.90 mm per day in summer, which represented 13%, 19%, 23% and 31% of the monthly average ET calculated using the one-day revisit dataset. The capability of a system to capture rapid changes in ET was significantly reduced for return periods higher than eight days. The impact of the revisit on ET depended mainly on the land cover type and seasonal climate, and was higher over areas with high ET. We did not observe significant and systematic differences between the impacts of the revisit on monthly ET estimates that are based on morning or afternoon observations. We found that four-day revisit scenarios provided a significant improvement in temporal sampling to monitor surface ET reducing by around 40% the uncertainty of ET products derived from a 16-day revisit system, such as Landsat for instance.Item Assessing within-Field Corn and Soybean Yield Variability from WorldView-3, Planet, Sentinel-2, and Landsat 8 Satellite Imagery(MDPI, 2021-02-26) Skakun, Sergii; Kalecinski, Natacha I.; Brown, Meredith G. L.; Johnson, David M.; Vermote, Eric F.; Roger, Jean-Claude; Franch, BelenCrop yield monitoring is an important component in agricultural assessment. Multi-spectral remote sensing instruments onboard space-borne platforms such as Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), and Visible Infrared Imaging Radiometer Suite (VIIRS) have shown to be useful for efficiently generating timely and synoptic information on the yield status of crops across regional levels. However, the coarse spatial resolution data inherent to these sensors provides little utility at the management level. Recent satellite imagery collection advances toward finer spatial resolution (down to 1 m) alongside increased observational cadence (near daily) implies information on crops obtainable at field and within-field scales to support farming needs is now possible. To test this premise, we focus on assessing the efficiency of multiple satellite sensors, namely WorldView-3, Planet/Dove-Classic, Sentinel-2, and Landsat 8 (through Harmonized Landsat Sentinel-2 (HLS)), and investigate their spatial, spectral (surface reflectance (SR) and vegetation indices (VIs)), and temporal characteristics to estimate corn and soybean yields at sub-field scales within study sites in the US state of Iowa. Precision yield data as referenced to combine harvesters’ GPS systems were used for validation. We show that imagery spatial resolution of 3 m is critical to explaining 100% of the within-field yield variability for corn and soybean. Our simulation results show that moving to coarser resolution data of 10 m, 20 m, and 30 m reduced the explained variability to 86%, 72%, and 59%, respectively. We show that the most important spectral bands explaining yield variability were green (0.560 μm), red-edge (0.726 μm), and near-infrared (NIR − 0.865 μm). Furthermore, the high temporal frequency of Planet and a combination of Sentinel-2/Landsat 8 (HLS) data allowed for optimal date selection for yield map generation. Overall, we observed mixed performance of satellite-derived models with the coefficient of determination (R2) varying from 0.21 to 0.88 (averaging 0.56) for the 30 m HLS and from 0.09 to 0.77 (averaging 0.30) for 3 m Planet. R2 was lower for fields with higher yields, suggesting saturation of the satellite-collected reflectance features in those cases. Therefore, other biophysical variables, such as soil moisture and evapotranspiration, at similar fine spatial resolutions are likely needed alongside the optical imagery to fully explain the yields.