Geography

Permanent URI for this communityhttp://hdl.handle.net/1903/2242

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    A Sample-Based Forest Monitoring Strategy Using Landsat, AVHRR and MODIS Data to Estimate Gross Forest Cover Loss in Malaysia between 1990 and 2005
    (MDPI, 2013-04-15) Giree, Namita; Stehman, Stephen V.; Potapov, Peter; Hansen, Matthew C.
    Insular Southeast Asia is a hotspot of humid tropical forest cover loss. A sample-based monitoring approach quantifying forest cover loss from Landsat imagery was implemented to estimate gross forest cover loss for two eras, 1990–2000 and 2000–2005. For each time interval, a probability sample of 18.5 km × 18.5 km blocks was selected, and pairs of Landsat images acquired per sample block were interpreted to quantify forest cover area and gross forest cover loss. Stratified random sampling was implemented for 2000–2005 with MODIS-derived forest cover loss used to define the strata. A probability proportional to x (πpx) design was implemented for 1990–2000 with AVHRR-derived forest cover loss used as the x variable to increase the likelihood of including forest loss area in the sample. The estimated annual gross forest cover loss for Malaysia was 0.43 Mha/yr (SE = 0.04) during 1990–2000 and 0.64 Mha/yr (SE = 0.055) during 2000–2005. Our use of the πpx sampling design represents a first practical trial of this design for sampling satellite imagery. Although the design performed adequately in this study, a thorough comparative investigation of the πpx design relative to other sampling strategies is needed before general design recommendations can be put forth.
  • Thumbnail Image
    Item
    Evaluating Landsat and RapidEye Data for Winter Wheat Mapping and Area Estimation in Punjab, Pakistan
    (MDPI, 2018-03-21) Khan, Ahmad; Hansen, Matthew C.; Potapov, Peter V.; Adusei, Bernard; Pickens, Amy; Krylov, Alexander; Stehman, Stephen V.
    While publicly available, cost-free coarse and medium spatial resolution satellite data such as MODIS and Landsat perform well in characterizing industrial cropping systems, commercial high spatial resolution satellite data are often preferred alternative for fine scale land tenure agricultural systems such as found in Pakistan. In this article, we integrated commercial 5 m spatial resolution RapidEye and free 30 m Landsat imagery in characterizing winter wheat in Punjab province, Pakistan. Specifically, we used 5 m spatial resolution RapidEye imagery from peak of the winter wheat growing season to derive training data for the characterization of time-series Landsat data. After co-registration, each RapidEye image was classified into wheat/no wheat labels at the 5 m resolution and then aggregated as percent cover to 30 m Landsat grid cells. We produced four maps, two using RapidEye derived continuous training data (of percent wheat cover) as input to a regression tree model, and two using RapidEye derived categorical training data as input to a classification tree model. From the RapidEye-derived 30 m continuous training data, we derived Map 1 as percent wheat per pixel, and Map 2 as binary wheat/no wheat classification derived using a 50% threshold applied to Map 1. To create the categorical wheat/no wheat training data, we first converted the continuous training data to a wheat/no wheat classification, and then used these categorical RapidEye training data to produce a categorical wheat map from the Landsat data. Two methods for categorizing the training data were used. The first method used a 50% wheat/no wheat threshold to produce Map 3, and the second method used only pure wheat (≥75% cover) and no wheat (≤25% cover) training pixels to produce Map 4. The approach of Map 4 is analogous to a standard method in which whole, pure, high-confidence training pixels are delineated. We validated the wheat maps with field data collected using a stratified, two-stage cluster design. Accuracy of the maps produced from the percent cover training data (Map 1 and Map 2) was not substantially better than the accuracy of the maps produced from the categorical training data as all methods yielded similar overall accuracies (±standard error): 88% (±4%) for Map 1, 90% (±4%) for Map 2, 90% (±4%) for Map 3, and 87% (±4%) for Map 4. Because the percent cover training data did not produce significantly higher accuracies, sub-pixel training data are not required for winter wheat mapping in Punjab. Given sufficient expertise in supervised classification model calibration, freely available Landsat data are sufficient for crop mapping in the fine-scale land tenure system of Punjab. For winter wheat mapping in Punjab and other like landscapes, training data for supervised classification may be collected directly from Landsat images without the need for high resolution reference imagery.
  • Thumbnail Image
    Item
    Sample-Based Estimation of Tree Cover Change in Haiti Using Aerial Photography: Substantial Increase in Tree Cover between 2002 and 2010
    (MDPI, 2021-09-14) Rodrigues-Eklund, Gabriela; Hansen, Matthew C.; Tyukavina, Alexandra; Stehman, Stephen V.; Hubacek, Klaus; Baiocchi, Giovanni
    Recent studies have used high resolution imagery to estimate tree cover and changes in natural forest cover in Haiti. However, there is still no rigorous quantification of tree cover change accounting for planted or managed trees, which are very important in Haiti’s farming systems. We estimated net tree cover change, gross loss, and gross gain in Haiti between 2002 and 2010 from a stratified random sample of 400 pixels with a systematic sub-sample of 25 points. Using 30 cm and 1 m resolution images, we classified land cover at each point, with any point touching a woody plant higher than 5 m classified as tree crown. We found a net increase in tree crown cover equivalent to 5.0 ± 2.3% (95% confidence interval) of Haiti’s land area. Gross gains and losses amounted to 9.0 ± 2.1% and 4.0 ± 1.3% of the territory, respectively. These results challenge, for the first time with empirical evidence, the predominant narrative that portrays Haiti as experiencing ongoing forest or tree cover loss. The net gain in tree cover quantified here represents a 35% increase from 2002 to 2010. Further research is needed to determine the drivers of this substantial net gain in tree cover at the national scale.