Geography

Permanent URI for this communityhttp://hdl.handle.net/1903/2242

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Automated Quantification of Surface Water Inundation in Wetlands Using Optical Satellite Imagery
    (MDPI, 2017-08-07) DeVries, Ben; Huang, Chengquan; Lang, Megan W.; Jones, John W.; Huang, Wenli; Creed, Irena F.; Carroll, Mark L.
    We present a fully automated and scalable algorithm for quantifying surface water inundation in wetlands. Requiring no external training data, our algorithm estimates sub-pixel water fraction (SWF) over large areas and long time periods using Landsat data. We tested our SWF algorithm over three wetland sites across North America, including the Prairie Pothole Region, the Delmarva Peninsula and the Everglades, representing a gradient of inundation and vegetation conditions. We estimated SWF at 30-m resolution with accuracies ranging from a normalized root-mean-square-error of 0.11 to 0.19 when compared with various high-resolution ground and airborne datasets. SWF estimates were more sensitive to subtle inundated features compared to previously published surface water datasets, accurately depicting water bodies, large heterogeneously inundated surfaces, narrow water courses and canopy-covered water features. Despite this enhanced sensitivity, several sources of errors affected SWF estimates, including emergent or floating vegetation and forest canopies, shadows from topographic features, urban structures and unmasked clouds. The automated algorithm described in this article allows for the production of high temporal resolution wetland inundation data products to support a broad range of applications.
  • Thumbnail Image
    Item
    Automated Extraction of Surface Water Extent from Sentinel-1 Data
    (MDPI, 2018-05-21) Huang, Wenli; DeVries, Ben; Huang, Chengquan; Lang, Megan W.; Jones, John W.; Creed, Irena F.; Carroll, Mark L.
    Accurately quantifying surface water extent in wetlands is critical to understanding their role in ecosystem processes. However, current regional- to global-scale surface water products lack the spatial or temporal resolution necessary to characterize heterogeneous or variable wetlands. Here, we proposed a fully automatic classification tree approach to classify surface water extent using Sentinel-1 synthetic aperture radar (SAR) data and training datasets derived from prior class masks. Prior classes of water and non-water were generated from the Shuttle Radar Topography Mission (SRTM) water body dataset (SWBD) or composited dynamic surface water extent (cDSWE) class probabilities. Classification maps of water and non-water were derived over two distinct wetlandscapes: the Delmarva Peninsula and the Prairie Pothole Region. Overall classification accuracy ranged from 79% to 93% when compared to high-resolution images in the Prairie Pothole Region site. Using cDSWE class probabilities reduced omission errors among water bodies by 10% and commission errors among non-water class by 4% when compared with results generated by using the SWBD water mask. These findings indicate that including prior water masks that reflect the dynamics in surface water extent (i.e., cDSWE) is important for the accurate mapping of water bodies using SAR data.
  • Thumbnail Image
    Item
    Characterizing Wetland Inundation and Vegetation Dynamics in the Arctic Coastal Plain Using Recent Satellite Data and Field Photos
    (MDPI, 2021-04-13) Zou, Zhenhua; DeVries, Ben; Huang, Chengquan; Lang, Megan W.; Thielke, Sydney; McCarty, Greg W.; Robertson, Andrew G.; Knopf, Jeff; Wells, Aaron F.; Macander, Matthew J.; Du, Ling
    Arctic wetlands play a critical role in the global carbon cycle and are experiencing disproportionate impacts from climate change. Even though Alaska hosts 65% of U.S. wetlands, less than half of the wetlands in Alaska have been mapped by the U.S. Fish and Wildlife Service National Wetlands Inventory (NWI) or other high-resolution wetlands protocols. The availability of time series satellite data and the development of machine learning algorithms have enabled the characterization of Arctic wetland inundation dynamics and vegetation types with limited ground data input. In this study, we built a semi-automatic process to generate sub-pixel water fraction (SWF) maps across the Coastal Plain of the Arctic National Wildlife Refuge (ANWR) in Alaska using random forest regression and 139 Sentinel-2 images taken in ice-free seasons from 2016 to 2019. With this, we characterized the seasonal dynamics of wetland inundation and explored their potential usage in determining NWI water regimes. The highest levels of surface water expression were detected in June, resulting from seasonal active layer thaw and snowmelt. Inundation was most variable in riverbeds, lake and pond margins, and depressional wetlands, where water levels fluctuate substantially between dry and wet seasons. NWI water regimes that indicate frequent inundation, such as permanently flooded wetlands, had high SWF values (SWF ≥ 90%), while those with infrequent inundation, such as temporarily flooded wetlands, had low SWF values (SWF < 10%). Vegetation types were also classified through the synergistic use of a vegetation index, water regimes, synthetic-aperture radar (SAR) data, topographic data, and a random forest classifier. The random forest classification algorithms demonstrated good performance in classifying Arctic wetland vegetation types, with an overall accuracy of 0.87. Compared with NWI data produced in the 1980s, scrub-shrub wetlands appear to have increased from 91 to 258 km2 over the last three decades, which is the largest percentage change (182%) among all vegetation types. However, additional field data are needed to confirm this shift in vegetation type. This study demonstrates the potential of using time series satellite data and machine learning algorithms in characterizing inundation dynamics and vegetation types of Arctic wetlands. This approach could aid in the creation and maintenance of wetland inventories, including the NWI, in Arctic regions and enable an improved understanding of long-term wetland dynamics.