Geography

Permanent URI for this communityhttp://hdl.handle.net/1903/2242

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Long-Term Record of Sampled Disturbances in Northern Eurasian Boreal Forest from Pre-2000 Landsat Data
    (MDPI, 2014-06-27) Chen, Dong; Loboda, Tatiana; Channan, Saurabh; Hoffman-Hall, Amanda
    Stand age distribution is an important descriptor of boreal forest structure, which is directly linked to many ecosystem processes including the carbon cycle, the land–atmosphere interaction and ecosystem services, among others. Almost half of the global boreal biome is located in Russia. The vast extent, remote location, and limited accessibility of Russian boreal forests make remote sensing the only feasible approach to characterize these forests to their full extent. A wide variety of satellite observations are currently available to monitor forest change and infer its structure; however, the period of observations is mostly limited to the 2000s era. Reconstruction of wall-to-wall maps of stand age distribution requires merging longer-term site observations of forest cover change available at the Landsat scale at a subset of locations in Russia with the wall-to-wall coverage available from coarse resolution satellites since 2000. This paper presents a dataset consisting of a suite of multi-year forest disturbance samples and samples of undisturbed forests across Russia derived from Landsat Thematic Mapper and Enhanced Thematic Mapper Plus images from 1985 to 2000. These samples provide crucial information regarding disturbance history in selected regions across the Russian boreal forest and are designed to serve as a training and/or validation dataset for coarse resolution data products. The overall accuracy and Kappa coefficient for the entire sample collection was found to be 83.98% and 0.83%, respectively. It is hoped that the presented dataset will benefit subsequent studies on a variety of aspects of the Russian boreal forest, especially in relation to the carbon budget and climate.
  • Thumbnail Image
    Item
    A Disease Control-Oriented Land Cover Land Use Map for Myanmar
    (MDPI, 2021-06-13) Chen, Dong; Shevade, Varada; Baer, Allison; He, Jiaying; Hoffman-Hall, Amanda; Ying, Qing; Li, Yao; Loboda, Tatiana V.
    Malaria is a serious infectious disease that leads to massive casualties globally. Myanmar is a key battleground for the global fight against malaria because it is where the emergence of drug-resistant malaria parasites has been documented. Controlling the spread of malaria in Myanmar thus carries global significance, because the failure to do so would lead to devastating consequences in vast areas where malaria is prevalent in tropical/subtropical regions around the world. Thanks to its wide and consistent spatial coverage, remote sensing has become increasingly used in the public health domain. Specifically, remote sensing-based land cover/land use (LCLU) maps present a powerful tool that provides critical information on population distribution and on the potential human-vector interactions interfaces on a large spatial scale. Here, we present a 30-meter LCLU map that was created specifically for the malaria control and eradication efforts in Myanmar. This bottom-up approach can be modified and customized to other vector-borne infectious diseases in Myanmar or other Southeastern Asian countries.
  • Thumbnail Image
    Item
    QUANTIFYING FIRE-INDUCED SURFACE FORCING IN SIBERIAN LARCH FORESTS
    (2017) Chen, Dong; Loboda, Tatiana V.; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Wildfires are a common disturbance agent in the global boreal forests. In the North American boreal forests, they have been shown to exert a strong cooling effect through post-fire changes in surface albedo that has a larger overall impact on the climate system than associated carbon emissions. However, these findings are not directly applicable to the Siberian larch forests, a major component of the boreal biome where species composition are dominated by a deciduous needleleaf species and fire regimes are characterized by the common occurrence of both stand-replacing and less-severe surface fires. This dissertation quantifies the post-fire surface forcing imposed by both fire types in these forests over 14 years since fire, and determines that both surface and stand replacing fires impose cooling effects through increased albedo during snow season. The magnitude of the cooling effect from stand replacing fires is much larger than that of surface fires, and this is likely a consequence of higher levels of canopy damage after stand-replacing fires. At its peak (~ year 11 after fire occurrence), the cooling magnitude is similar to that of the North American boreal fires. Strong cooling effect and the wide-spread occurrence of stand-replacing fires lead to a net negative surface forcing over the entire region between 2002 and 2013. Based on the extended albedo trajectory which was made possible by developing a 24-year stand age map, it was shown that the cooling effect of stand-replacing fires lasts for more than 26 years. The overall cooling effect of surface fires is of lower magnitude and is likely indicative of damages not only to the canopies but also the shrubs in the understory. Based on the identified difference in their influences on post-fire energy budget, this dissertation also identified a remote sensing method to separate surface fires from stand-replacing fires in Siberian larch forests with an 88% accuracy. The insights gained from this dissertation will allow for accurate representation of wildfires in the regional or global climate models in the future.