Astronomy
Permanent URI for this communityhttp://hdl.handle.net/1903/2215
Browse
Search Results
Item Example code and data for "SOFIA FEEDBACK Survey: The Pillars of Creation in [C II] and Molecular Lines"(2023-09-07) Karim, Ramsey; Pound, Marc W.; Wolfire, Mark G.; Mundy, Lee; Tielens, Alexander G. G. M.We present here the original observations used in the manuscript "SOFIA FEEDBACK Survey: The Pillars of Creation in [C II] and Molecular Lines" (Karim et al., Astronomical Journal, 2023). The data consist of FITS format images and datacubes of the rotational transitions of molecular lines CO, 13CO, C18O, CS, HCN, HCO+, and N2H+ in the 3mm spectral window, and the atomic spectral lines [C II] 158 micron and [O I] 63 micron. We also present a snapshot copy of the scoby (Spectra from Catalogs of OB Stars) software repository, some model data necessary for it, and some examples of how to run it.Item Example code and data for "Identifying physical structures in our Galaxy with Gaussian Mixture Models: An unsupervised machine learning technique"(2023) Tiwari, Maitraiyee; Kievit, Rens; Kabanovic, Slawa; Bonne, Lars; Falasca, F.; Guevara, Cristian; Higgins, Ronan; Justen, M.; Karim, Ramsey; Pabst, Cornelia; Pound, Marc W.; Schneider, Nicola; Simon, R.; Stutzki, Jurgen; Wolfire, Mark; Tielens, Alexander G. G. M.We present a python software repository implementing the PyGMMis (Melchior & Goudling 2018) method to astronomical data cubes of velocity resolved line observations. This implementation is described extensively in Tiwari et al. 2023, ApJ. An example is included in /example/ containing the SOFIA data of RCW120 used in Tiwari et al. 2023, ApJ, along with example scripts describing the full implementation of our code. The majority of parameter tweaking can be performed within 'rcw120-params.txt' which is continuously called during the procedure. A full description of the code and how to use it is in README.md (markdown file).Item The PhotoDissociation Region Toolbox: Software and Models for Astrophysical Analysis(The Astronomical Journal, 2023-01-15) Pound, Marc W.; Wolfire, Mark G.The PhotoDissociation Region Toolbox provides comprehensive, easy-to-use, public software tools and models that enable an understanding of the interaction of the light of young, luminous, massive stars with the gas and dust in the Milky Way and in other galaxies. It consists of an open-source Python toolkit and photodissociation region (PDR) models for analysis of infrared and millimeter/submillimeter line and continuum observations obtained by ground-based and suborbital telescopes, and astrophysics space missions. PDRs include all of the neutral gas in the interstellar medium where far-ultraviolet photons dominate the chemistry and/or heating. In regions of massive star formation, PDRs are created at the boundaries between the H II regions and neutral molecular cloud, as photons with energies 6 eV < hν < 13.6 eV photodissociate molecules and photoionize metals. The gas is heated by photoelectrons from small grains and large molecules and cools mostly through far-infrared (FIR) fine-structure lines like [O I] and [C II]. The models are created from state-of-the art PDR codes that include molecular freezeout; recent collision, chemical, and photorates; new chemical pathways, such as oxygen chemistry; and allow for both clumpy and uniform media. The models predict the emergent intensities of many spectral lines and FIR continuum. The tools find the best-fit models to the observations and provide insight into the physical conditions and chemical makeup of the gas and dust. The PDR Toolbox enables novel analysis of data from telescopes such as the Infrared Space Observatory, Spitzer, Herschel, the Stratospheric Terahertz Observatory, the Stratospheric Observatory for Infrared Astronomy, the Submillimeter Wave Astronomy Satellite, the Atacama Pathfinder Experiment, the Atacama Large Millimeter/submillimeter Array, and the JWST.