A. James Clark School of Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/1654

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Engineering Cell Surfaces with Polyelectrolyte Materials for Translational Applications
    (MDPI, 2017-01-28) Zhang, Peipei; Bookstaver, Michelle L.; Jewell, Christopher M.
    Engineering cell surfaces with natural or synthetic materials is a unique and powerful strategy for biomedical applications. Cells exhibit more sophisticated migration, control, and functional capabilities compared to nanoparticles, scaffolds, viruses, and other engineered materials or agents commonly used in the biomedical field. Over the past decade, modification of cell surfaces with natural or synthetic materials has been studied to exploit this complexity for both fundamental and translational goals. In this review we present the existing biomedical technologies for engineering cell surfaces with one important class of materials, polyelectrolytes. We begin by introducing the challenges facing the cell surface engineering field. We then discuss the features of polyelectrolytes and how these properties can be harnessed to solve challenges in cell therapy, tissue engineering, cell-based drug delivery, sensing and tracking, and immune modulation. Throughout the review, we highlight opportunities to drive the field forward by bridging new knowledge of polyelectrolytes with existing translational challenges.
  • Thumbnail Image
    Item
    Exploiting Unique Features of Microneedles to Modulate Immunity
    (Wiley, 2023-06-28) Edwards, C.; Shah, S. A.; Gebhardt, T.; Jewell, C. M.
    Microneedle arrays (MNAs) are small patches containing hundreds of short projections that deliver signals directly to dermal layers without causing pain. These technologies are of special interest for immunotherapy and vaccine delivery because they directly target immune cells concentrated in the skin. The targeting abilities of MNAs result in efficient immune responses—often more protective or therapeutic—compared to conventional needle delivery. MNAs also offer logistical benefits, such as self-administration and transportation without refrigeration. Thus, numerous preclinical and clinical studies are exploring these technologies. Here we discuss the unique advantages of MNA, as well as critical challenges – such as manufacturing and sterility issues – the field faces to enable widespread deployment. We explain how MNA design parameters can be exploited for controlled release of vaccines and immunotherapies, and the application to preclinical models of infection, cancer, autoimmunity, and allergies. We also discuss specific strategies to reduce off-target effects compared to conventional vaccine delivery routes, and novel chemical and manufacturing controls that enable cargo stability in MNAs across flexible intervals and temperatures. We then examine clinical research using MNAs. We conclude with drawbacks of MNAs and the implications, and emerging opportunities to exploit MNAs for immune engineering and clinical use.
  • Thumbnail Image
    Item
    Self-assembly of immune signals to program innate immunity through rational adjuvant design
    (Wiley, 2022-11-14) Bookstaver, Michelle L.; Zeng, Qin; Oakes, Robert S.; Kapnick, Senta M.; Saxena, Vikas; Edwards, Camilla; Venkataraman, Nishedhya; Black, Sheneil K.; Zeng, Xiangbin; Froimchuk, Eugene; Gebhardt, Thomas; Bromberg, Jonathan S.; Jewell, Christopher M.
    Recent clinical studies show activating multiple innate immune pathways drives robust responses in infection and cancer. Biomaterials offer useful features to deliver multiple cargos, but add translational complexity and intrinsic immune signatures that complicate rational design. Here a modular adjuvant platform is created using self-assembly to build nanostructured capsules comprised entirely of antigens and multiple classes of toll-like receptor agonists (TLRas). These assemblies sequester TLR to endolysosomes, allowing programmable control over the relative signaling levels transduced through these receptors. Strikingly, this combinatorial control of innate signaling can generate divergent antigen-specific responses against a particular antigen. These assemblies drive reorganization of lymph node stroma to a pro-immune microenvironment, expanding antigen-specific T cells. Excitingly, assemblies built from antigen and multiple TLRas enhance T cell function and antitumor efficacy compared to ad-mixed formulations or capsules with a single TLRa. Finally, capsules built from a clinically relevant human melanoma antigen and up to three TLRa classes enable simultaneous control of signal transduction across each pathway. This creates a facile adjuvant design platform to tailor signaling for vaccines and immunotherapies without using carrier components. The modular nature supports precision juxtaposition of antigen with agonists relevant for several innate receptor families, such as toll, STING, NOD, and RIG.