A. James Clark School of Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/1654

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Characterization and Analysis of Extensile Fluidic Artificial Muscles
    (MDPI, 2021-01-30) Garbulinski, Jacek; Balasankula, Sai C.; Wereley, Norman M.
    Extensile fluidic artificial muscles (EFAMs) are soft actuators known for their large ranges of extension, low weight, and blocked forces comparable to those of pneumatic cylinders. EFAMs have yet to be studied in a way that thoroughly focuses on their manufacturing, experimental characterization, and modeling. A fabrication method was developed for production of two EFAMs. The quasi-static axial force response of EFAMs to varying displacement was measured by testing two specimens under isobaric conditions over a pressure range of 103.4–517.1 kPa (15–75 psi) with 103.4 kPa (15 psi) increments. The muscles were characterized by a blocked force of 280 N and a maximum stroke of 98% at 517.1 kPa (75 psi). A force-balance model was used to analyze EFAM response. Prior work employing the force-balance approach used hyper-elastic constitutive models based on polynomial expressions. In this study, these models are validated for EFAMs, and new constitutive models are proposed that better represent the measured stress values of rubber as a function of strain. These constitutive models are compared in terms of accuracy when estimating pressure-dependent stress–strain relationships of the bladder material. The analysis demonstrates that the new hyper-elastic stress models have an error 5% smaller than models previously employed for EFAMs for the same number of coefficients. Finally, the analysis suggests that the new stress functions have smaller errors than the polynomial stress model with the same number of coefficients, guarantee material stability, and are more conservative about the stress values for strains outside of the testing range.
  • Thumbnail Image
    Item
    Photogrammetric Measurement and Analysis of the Shape Profile of Pneumatic Artificial Muscles
    (MDPI, 2021-04-06) Chambers, Jonathan M.; Wereley, Norman M.
    Inaccuracies in modeling of the geometric shape of PAMs has long been cited as a probable source of error in modeling and design efforts. The geometric shape and volume of PAMs is commonly approximated using a cylindrical shape profile, even though its shape is non-cylindrical. Correction factors—based on qualitative observations of the PAM’s general shape—are often implemented to compensate for error in this cylindrical shape approximation. However, there is little evidence or consensus on the accuracy and form of these correction factors. Approximations of the shape profile are also used to calculate the internal volume of PAMs, as experimental measurements of the internal volume require intrusive testing methods and specialized equipment. This research presents a photogrammetric method for measuring the shape profile and internal volume of PAMs. A test setup, method of image data acquisition, and a preliminary analysis of the image data, is presented in this research. A 22.2 mm (7/8 in) diameter PAM is used to demonstrate the photogrammetric procedure and test its accuracy. Analysis of the tested PAM characterizes trends of the shape profile with respect to pressure and contraction. The common method of estimating the diameter—through the use of the cylindrical approximation and initial geometry of the PAM—is tested by comparison to the measured shape profile data. Finally, a simple method of calculating the internal volume using the measured shape profile data is developed. The presented method of acquiring photogrammetric measurements of PAM shape produces an accurate characterization of its shape profile, thereby mitigating uncertainty in PAM shape in analysis and other efforts.
  • Thumbnail Image
    Item
    Pneumatic Artificial Muscle Driven Trailing Edge Flaps For Active Rotors
    (2011) Woods, Benjamin King Sutton; Wereley, Norman M; Kothera, Curt S; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This research focuses on the development of an active rotor system capable of primary control and vibration reduction for rotorcraft. The objective is to investigate the feasibility of a novel Trailing Edge Flap (TEF) actuation system driven by Pneumatic Artificial Muscles (PAMs). A significant design effort led to a series of experimental apparatuses which tested various aspects of the performance of the actuators themselves and of TEF systems driven by them. Analytical models were developed in parallel to predict the quasistatic and dynamic behavior of these systems. Initial testing of a prototype blade section with an integrated PAM driven TEF proved the viability of the concept through successful benchtop testing under simulated M = 0.3 loading and open jet wind tunnel tests under airspeeds up to M = 0.13. This prototype showed the ability of PAM actuators to generate significant flap deflections over the bandwidth of interest for primary control and vibration reduction on a rotorcraft. It also identified the importance of high pneumatic system mass flow rate for maintaining performance at higher operating frequencies. Research into the development and improvement of PAM actuators centered around a new manufacturing technique which was invented to directly address the weaknesses of previous designs. Detailed finite element model (FEM) analysis of the design allowed for the mitigation of stress concentrations, leading to increased strength. Tensile testing of the swaged actuators showed a factor of safety over 5, and burst pressure testing showed a factor of safety of 3. Over 120,000,000 load cycles were applied to the actuators without failure. Characterization testing before, during, and after the fatigue tests showed no reduction in PAM performance. Wind tunnel testing of a full scale Bell 407 blade retrofitted with a PAM TEF system showed excellent control authority. At the maximum wind tunnel test speed of M = 0.3 and a derated PAM operating pressure of 28 psi, 18.8° half-peak-to-peak flap deflections were achieved at 1/rev (7 Hz), and 17.1° of half-peak-to-peak flap deflection was still available at 5/rev (35 Hz). A quasistatic system model was developed which combined PAM forces, kinematics and flap aerodynamics to predict flap deflection amplitudes. This model agreed well with experimental data. Whirl testing of a sub-span whirl rig under full scale loading conditions showed the ability of PAM TEF systems to operate under full scale levels of centrifugal (CF), aerodynamic, and inertia loading. A commercial pneumatic rotary union was used to provide air in the rotating frame. Extrapolation of the results to 100% of CF acceleration predicts 15.4° of half-peak-to-peak flap deflection at 1/rev (7 Hz), and 7.7° of half-peak-to-peak flap deflection at 5/rev (35 Hz). A dynamic model was developed which successfully predicted the time domain behavior of the PAM actuators and PAM TEF system. This model includes control valve dynamics, frictional tubing losses, pressure dynamics, PAM forces, mechanism kinematics, aerodynamic hinge moments, system stiffness, damping, and inertia to solve for the rotational dynamics of the flap. Control system development led to a closed loop control system for PAM TEF systems capable of tracking complex, multi-sinusoid flap deflections representative of a combined primary control and vibration reduction flap actuation scheme. This research shows the promise that PAM actuators have as drivers for trailing edge flaps on active helicopter rotors. The robustness, ease of integration, control authority and tracking accuracy of these actuators have been established, thereby motivating further research.