A. James Clark School of Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/1654

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Characterization of aerosol plumes from singing and playing wind instruments associated with the risk of airborne virus transmission
    (Wiley, 2022-06-13) Wang, Lingzhe; Lin, Tong; Da Costa, Hevander; Zhu, Shengwei; Stockman, Tehya; Kumar, Abhishek; Weaver, James; Spede, Mark; Milton, Donald K.; Hertzberg, Jean; Toohey, Darin W.; Vance, Marina E.; Miller, Shelly L.; Srebric, Jelena
    The exhalation of aerosols during musical performances or rehearsals posed a risk of airborne virus transmission in the COVID-19 pandemic. Previous research studied aerosol plumes by only focusing on one risk factor, either the source strength or convective transport capability. Furthermore, the source strength was characterized by the aerosol concentration and ignored the airflow rate needed for risk analysis in actual musical performances. This study characterizes aerosol plumes that account for both the source strength and convective transport capability by conducting experiments with 18 human subjects. The source strength was characterized by the source aerosol emission rate, defined as the source aerosol concentration multiplied by the source airflow rate (brass 383 particle/s, singing 408 particle/s, and woodwind 480 particle/s). The convective transport capability was characterized by the plume influence distance, defined as the sum of the horizontal jet length and horizontal instrument length (brass 0.6 m, singing 0.6 m and woodwind 0.8 m). Results indicate that woodwind instruments produced the highest risk with approximately 20% higher source aerosol emission rates and 30% higher plume influence distances compared with the average of the same risk indicators for singing and brass instruments. Interestingly, the clarinet performance produced moderate source aerosol concentrations at the instrument’s bell, but had the highest source aerosol emission rates due to high source airflow rates. Flute performance generated plumes with the lowest source aerosol emission rates but the highest plume influence distances due to the highest source airflow rate. Notably, these comprehensive results show that the source airflow is a critical component of the risk of airborne disease transmission. The effectiveness of masking and bell covering in reducing aerosol transmission is due to the mitigation of both source aerosol concentrations and plume influence distances. This study also found a musician who generated approximately five times more source aerosol concentrations than those of the other musicians who played the same instrument. Despite voice and brass instruments producing measurably lower average risk, it is possible to have an individual musician produce aerosol plumes with high source strength, resulting in enhanced transmission risk; however, our sample size was too small to make generalizable conclusions regarding the broad musician population.
  • Thumbnail Image
    Item
    Development and Application of Mach 10 PIV in a Large Scale Wind Tunnel
    (2018) Brooks, Jonathan; Gupta, Ashwani K; Marineau, Eric C; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This dissertation presents the development of particle image velocimetry (PIV) for use in a large-scale hypersonic wind tunnel to measure the turbulent boundary layer (TBL) and shock turbulent boundary layer interaction (STBLI) on a large hollow cylinder flare (HCF) test article. The main feature of this application of PIV is the novel local injector which injects seeding particles into the high-speed section of the flow. Development work began sub-scale in a Mach 3 wind tunnel where the seeding particle response was characterized and the local injectors were demonstrated. Once the measurement technique was refined, it was scaled up to hypersonic flow. The particle response was characterized through PIV measurements of Mach 3 TBLs under low Reynolds number conditions, $ Re_\tau=200{-}1,000 $. Effects of Reynolds number, particle response and boundary layer thickness were evaluated separately from facility specific experimental apparatus or methods. Prior to the current study, no detailed experimental study characterizing the effect of Stokes number on attenuating wall normal fluctuating velocities has been performed. Also, particle lag and spatial resolution are shown to act as low pass filters on the fluctuating velocity power spectral densities which limit the measurable energy content. High-speed local seeding particle injection has been demonstrated successfully for the first time. Prior to these measurements, PIV applications have employed global seeding or local seeding in the subsonic portion of the nozzle. The high-speed local seeding injectors accelerate the particle aerosol through a converging/diverging supersonic nozzle which exits tangentially to the wall. Two methods are used to measure the particle concentration which shows good agreement to the CFD particle tracking codes used to design the injector nozzle profiles. Based on the particle concentration distribution in the boundary layer a new phenomenon of particle biasing has been identified and characterized. PIV measurements of a Mach 10 TBL and STBLI have been performed on a large (2.4-m long, 0.23-m dia.) HCF at a freestream unit Reynolds number of 16 million per meter. These are the highest Mach number PIV measurements reported in the literature. Particles are locally injected from the leading edge of the test article and turbulent mixing dispersed the particles for a relatively uniform high concentration of particles at the measurement section 1.83-m downstream of the leading edge. The van Driest transformed mean velocity in the TBL agrees well with incompressible zero pressure gradient log law theory. Morkovin-scaled streamwise velocity fluctuations agree well with the literature for the majority of the boundary layer.
  • Thumbnail Image
    Item
    MODELING AND EXPERIMENTAL ANALYSIS OF PHASED ARRAY SYNTHETIC JET CROSS-FLOW INTERACTIONS
    (2014) HASNAIN, ZOHAIB; Flatau, Alison B; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Synthetic Jet Actuators (SJAs) are fluidic devices capable of adding momentum to static or non-static bodies of fluid without adding mass. They are therefore categorized as zero-net-mass-flux (ZNMF) momentum source. In its simplest compact form a SJA consists of an oscillatory surface connected to a cavity with a single exit orifice through which the fluid enters and exits. SJA technology has been utilized in applications ranging from boundary layer control over aerodynamic surfaces to fluidic mixing in dispersion applications. The ZNMF nature of the technology means it is not subject to constraints experienced by traditional momentum sources that require the addition of mass in order to impart momentum. The momentum that can be added by a single SJA is limited by the energy transfer capabilities of the oscillating surface. In modern SJAs this surface usually is a piezoceramic/metal composite subjected to a high voltage AC signal. For applications such as flow control over aerodynamic surfaces, modern SJAs are used in an array configuration and are capable of altering the flow momentum by values ranging from 0.01-10%. While it is possible to build larger actuators to increase this value the benefits associated with the compact size would be lost. It is therefore desirable to tune other parameters associated with SJA arrays to increase this value. The specific motivation for this study comes from the desire to control the momentum addition capacity of a specific SJA array, without having to alter any geometric parameters. In a broader sense this study focuses on understanding the physics of SJA interaction in array configuration through experiments which are then used to guide in the design of modeling technique that predicts SJA array behavior in cross-flows. The first half of the project focused on understanding SJA behavior through modeling. Numerical techniques were initially used to model SJA and SJA arrays in cross-flows. Reduced numerical models were then developed from the full momentum equations. Analytical methods to solve these reduced order models were then implemented in order to cut down on solution time. A wave equation based solution to the stream and vorticity formulation of the momentum equations was implemented to predict SJA behavior. For the experimental component of the project, a finite span high aspect ratio orifice SJA was designed and characterized through Constant Temperature Anemometry (CTA). Two of these SJA were then placed in close proximity to one another. The relative phase of operation between the two jets was altered and the resulting flow field was measured through Particle Image Velocimetry (PIV). This process was repeated for different sets of array spacing, and SJA to cross-flow velocity ratio. For specific choices of these parameters a 40% increase in momentum addition was observed. The experimental results were used to validate the modeling techniques. In general reasonable agreement between the modeling and experiment was observed in specific domains of the flow field.