A. James Clark School of Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/1654

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Analysis of Manufacturing-Induced Defects and Structural Deformations in Lithium-Ion Batteries Using Computed Tomography
    (MDPI, 2018-04-13) Wu, Yi; Saxena, Saurabh; Xing, Yinjiao; Wang, Youren; Li, Chuan; Yung, Winco K. C.; Pecht, Michael
    Premature battery drain, swelling and fires/explosions in lithium-ion batteries have caused wide-scale customer concerns, product recalls, and huge financial losses in a wide range of products including smartphones, laptops, e-cigarettes, hoverboards, cars, and commercial aircraft. Most of these problems are caused by defects which are difficult to detect using conventional nondestructive electrical methods and disassembly-based destructive analysis. This paper develops an effective computed tomography (CT)-based nondestructive approach to assess battery quality and identify manufacturing-induced defects and structural deformations in batteries. Several unique case studies from commercial e-cigarette and smartphone applications are presented to show where CT analysis methods work.
  • Thumbnail Image
    Item
    The Distribution and Detection Issues of Counterfeit Lithium-Ion Batteries
    (MDPI, 2022-05-21) Lingxi, Kong; Das, Diganta; Pecht, Michael G.
    This paper presents the various ways that lithium-ion batteries are being counterfeited, the problems that counterfeit batteries present, how they enter the consumer market, and the difficulties of detection. Simple external visual inspection of the battery is unreliable. As shown in the presented case study, even for the same brand batteries, their internal structures are different. The current counterfeit prevention methods focus on the manufacturing step. To reduce the risk of counterfeit batteries, device manufacturers and retail stores should characterize the batteries they receive. In addition, related authorities or organizations should set standards to enable a universal battery tracking method along the supply chain to prevent counterfeit lithium-ion batteries from entering the market.
  • Thumbnail Image
    Item
    TOBACCO MOSAIC VIRUS BASED THREE DIMENSIONAL ANODES FOR LITHIUM ION BATTERIES
    (2011) Chen, Xilin; Wang, Chunsheng; Chemical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Silicon and tin are promising anodic materials with both the high gravimetric and volumetric capacities for the next generation lithium-ion batteries. To prevent silicon or tin electrodes from a structure failure due to the volume change during lithiation and delithiation, a genetically modified Tobacco mosaic virus (TMV1cys) template is used to fabricate a 3D current collector for the silicon or tin electrode. The 3D current collector can effectively enhance the stabilities of the silicon or tin anodes. The TMV1cys particle can vertically self assemble onto the metal (i.e. Au, Ni, Fe) surfaces in a buffer solution ( PH=7 ). The abundant cysteine-derived thiol groups on the outer surface of the TMV1cys particle can react with metals to form near-covalent bonds. Thus it is very simple to form a 3D current collector by reducing metal such as nickel onto the TMV1cys surface by an electroless metal deposition. The 3D structure increases the electrode surface area by 10-fold. In order to investigate the effect of the 3D structure on the silicon anode, a physical vapor deposition methodology is used to deposit silicon onto the 3D current collector to form a nickel-silicon core-shell nano-rod anode. The abundant free spaces in the electrode accommodate the volume change during cycling and thus the cycleability of the silicon anode is greatly enhanced. The retention capacity at 1C is more than 1100 mAh/g after 340 cycles. Furthermore, a simple electrodeposition method is used to replace the complex physical vapor deposition methodology to make a uniform silicon deposition on the 3D current collector. The electrodeposition methodology is also used to prepare a tin anode. The electrodeposited silicon anode has comparable performance to those silicon anodes prepared by the physical vapor deposition technique. In order to enhance the electrochemical kinetics in silicon anode, the phosphorus doped n-type silicon is used to replace the pure silicon for preparing a high-rate-performance 3D silicon anode. Since the electrochemical reactions take place on the interface between the silicon and the electrolyte, the n-type silicon provides a quicker diffusion path for the involved electrons. The rate capability of the silicon anode has been increased and the capacity difference enlarges with the increasing current density.