A. James Clark School of Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/1654

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    Item
    Safety Requirements for Transportation of Lithium Batteries
    (MDPI, 2017-06-09) Huo, Haibo; Xing, Yinjiao; Pecht, Michael; Züger, Benno J.; Khare, Neeta; Vezzini, Andrea
    The demand for battery-powered products, ranging from consumer goods to electric vehicles, keeps increasing. As a result, batteries are manufactured and shipped globally, and the safe and reliable transport of batteries from production sites to suppliers and consumers, as well as for disposal, must be guaranteed at all times. This is especially true of lithium batteries, which have been identified as dangerous goods when they are transported. This paper reviews the international and key national (U.S., Europe, China, South Korea, and Japan) air, road, rail, and sea transportation requirements for lithium batteries. This review is needed because transportation regulations are not consistent across countries and national regulations are not consistent with international regulations. Comparisons are thus provided to enable proper and cost-effective transportation; to aid in the testing, packaging, marking, labelling, and documentation required for safe and reliable lithium cell/battery transport; and to help in developing national and internal policies.
  • Thumbnail Image
    Item
    Algorithm to Determine the Knee Point on Capacity Fade Curves of Lithium-Ion Cells
    (MDPI, 2019-07-29) Diao, Weiping; Saxena, Saurabh; Han, Bongtae; Pecht, Michael
    Lithium-ion batteries typically exhibit a transition to a more rapid capacity fade trend when subjected to extended charge–discharge cycles and storage conditions. The identification of the knee point can be valuable to identify the more severe degradation trend, and to provide guidance when scheduling battery replacements and planning secondary uses of the battery. However, a concise and repeatable determination of a knee point has not been documented. This paper provides a definition of the knee point which can be used as a degradation metric, and develops an algorithm to identify it. The algorithm is implemented on various data cases, and the results indicate that the approach provides repeatable knee point identification.
  • Thumbnail Image
    Item
    Battery Stress Factor Ranking for Accelerated Degradation Test Planning Using Machine Learning
    (MDPI, 2021-01-30) Saxena, Saurabh; Roman, Darius; Robu, Valentin; Flynn, David; Pecht, Michael
    Lithium-ion batteries power numerous systems from consumer electronics to electric vehicles, and thus undergo qualification testing for degradation assessment prior to deployment. Qualification testing involves repeated charge–discharge operation of the batteries, which can take more than three months if subjected to 500 cycles at a C-rate of 0.5C. Accelerated degradation testing can be used to reduce extensive test time, but its application requires a careful selection of stress factors. To address this challenge, this study identifies and ranks stress factors in terms of their effects on battery degradation (capacity fade) using half-fractional design of experiments and machine learning. Two case studies are presented involving 96 lithium-ion batteries from two different manufacturers, tested under five different stress factors. Results show that neither the individual (main) effects nor the two-way interaction effects of charge C-rate and depth of discharge rank in the top three significant stress factors for the capacity fade in lithium-ion batteries, while temperature in the form of either individual or interaction effect provides the maximum acceleration.
  • Thumbnail Image
    Item
    Development of an Informative Lithium-Ion Battery Datasheet
    (MDPI, 2021-09-01) Diao, Weiping; Kulkarni, Chetan; Pecht, Michael
    Lithium-ion battery datasheets, also known as specification sheets, are documents that battery manufacturers provide to define the battery’s function, operational limit, performance, reliability, safety, cautions, prohibitions, and warranty. Product manufacturers and customers rely on the datasheets for battery selection and battery management. However, battery datasheets often have ambiguous and, in many cases, misleading terminology and data. This paper reviews and evaluates the datasheets of 25 different lithium-ion battery types from eleven major battery manufacturers. Issues that customers may face are discussed, and recommendations for developing an informative and valuable datasheet that will help customers procure suitable batteries are presented.
  • Thumbnail Image
    Item
    Examining the Electrochemical Properties of Hybrid Aqueous/Ionic Liquid Solid Polymer Electrolytes through the Lens of Composition-Function Relationships
    (Wiley, 2023-07-04) Ludwig, Kyle B.; Correll-Brown, Riordan; Freidlin, Max; Garaga, Mounesha N.; Bhattacharyya, Sahana; Gonzales, Patricia M.; Cresce, Arthur V.; Greenbaum, Steven; Wang, Chunsheng; Kofinas, Peter
    Solid polymer electrolytes (SPEs) have the potential to meet evolving Li-ion battery demands, but for these electrolytes to satisfy growing power and energy density requirements, both transport properties and electrochemical stability must be improved. Unfortunately, improvement in one of these properties often comes at the expense of the other. To this end, a “hybrid aqueous/ionic liquid” SPE (HAILSPE) which incorporates triethylsulfonium-TFSI (S2,2,2) or N-methyl-N-propylpyrrolidinium-TFSI (Pyr1,3) ionic liquid (IL) alongside H2O and LiTFSI salt to simultaneously improve transport and electrochemical stability is studied. This work focuses on the impact of HAILSPE composition on electrochemical performance. Analysis shows that an increase in LiTFSI content results in decreased ionic mobility, while increasing IL and water content can offset its impact. pfg-NMR results reveal that preferential lithium-ion transport is present in HAILSPE systems. Higher IL concentrations are correlated with an increased degree of passivation against H2O reduction. Compared to the Pyr1,3 systems, the S2,2,2 systems exhibit a stronger degree of passivation due to the formation of a multicomponent interphase layer, including LiF, Li2CO3, Li2S, and Li3N. The results herein demonstrate the superior electrochemical stability of the S2,2,2 systems compared to Pyr1,3 and provide a path toward further enhancement of HAILSPE performance via composition optimization.
  • Thumbnail Image
    Item
    Direct and Rapid High-Temperature Upcycling of Degraded Graphite
    (Wiley, 2023-06-27) Li, Tangyuan; Tao, Lei; Xu, Lin; Meng, Taotao; Clifford, Bryson Callie; Li, Shuke; Zhao, Xinpeng; Rao, Jiancun; Lin, Feng; Hu, Liangbing
    Recycling the degraded graphite is becoming increasingly important, which can helped conserve natural resources, reduce waste, and provide economic and environmental benefits. However, current regeneration methods usually suffer from the use of harmful chemicals, high energy and time consumption, and poor scalability. Herein, we report a continuously high-temperature heating (≈2000 K) process to directly and rapidly upcycle degraded graphite containing impurities. A sloped carbon heater is designed to provide the continuous heating source, which enables robust control over the temperature profile, eliminating thermal barrier for heat transfer compared to conventional furnace heating. The upcycling process can be completed within 0.1 s when the degraded graphite rolls down the sloped heater, allowing us to produce the upcycled graphite on a large scale. High-temperature heating removes impurities and enhances the graphitization degree and (002) interlayer spacing, making the upcycled graphite more suitable for lithium intercalation and deintercalation. The assembled upcycled graphite||Li cell displays a high reversible capacity of ≈320 mAh g−1 at 1 C with a capacity retention of 96% after 500 cycles, comparable to current state-of-the-art recycled graphite. The method is a chemical-free, rapid, and scalable way to upcycle degraded graphite, and is adaptable to recycle other electrode materials.
  • Thumbnail Image
    Item
    EFFECTS OF EXTERNAL PRESSURE ON SOLID STATE DIFFUSION OF LITHIUM IN LITHIUM-ION BATTERIES
    (2016) Williard, Nicholas Dane; Pecht, Michael; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Electrochemical-mechanical effects in lithium-ion batteries refer to the phenomena that give way to the piezo-electrochemical properties observed during intercalation of lithium into lithium-ion battery electrodes. By applying perturbations to the external pressure of a lithium-ion battery, the dynamics of lithium intercalation, in particular the diffusion rate of lithium-ions onto and out of battery electrodes, can be studied with respect to the open-circuit potential and the applied hydrostatic pressure. In this study, commercial thin film batteries were subjected to tests in a low-pressure chamber and in a dynamic materials analyzer simulating hydrostatic pressures between 0 and 115 KPa. Under each hydrostatic pressure condition, galvanostatic intermittent titration technique (GITT) was performed to measure and correlate lithium diffusivity to battery strain, open-circuit potential, and applied hydrostatic force. From the data a model was developed for lithium diffusivity as a function of open circuit potential and hydrostatic pressure. The implications of this work extend from the use of lithiated graphite for energy harvesting and actuation to policy and regulations for how batteries should be safely transported. To provide some insight into how this work can be applied to policy actions, current international regulations regarding the air transport of lithium-ion batteries are critically reviewed. The pre-shipping tests are outlined and evaluated to assess their ability to fully mitigate risks during battery transport. In particular, the guidelines for shipping second-use batteries are considered. Because the electrochemical state of previously used batteries is inherently different from that of new batteries, additional considerations must be made to evaluate these types of cells. Additional tests are suggested that evaluate the risks of second-use batteries, which may or may not contain incipient faults. Finally, this work is extended to supercapacitors through the development of a model to predict the oxidation of functional groups on the surface of graphite electrodes with respect to operational temperature and voltage. This model is used to predict the operational life of supercapacitors and validates the model on accelerated testing data. The final results are compared to previous models proposed in literature.