A. James Clark School of Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/1654

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Predictive Mechanistic Model of Creep Response of Single-Layered Pressure-Sensitive Adhesive (PSA) Joints
    (MDPI, 2021-07-08) Huang, Hao; Dasgupta, Abhijit; Singh, Narendra
    This paper explores the uniaxial tensile creep response of acrylic-based pressure-sensitive adhesive (PSA), which exhibits a unique multi-phase creep response that does not have the classical steady-state region due to multiple transitions caused by several competing mechanisms: (i) cavity nucleation and growth in the interior of the adhesive material of the PSA system, as well as at the interfaces between the PSA and the substrate; (ii) fibrillation of the bulk adhesive, and (iii) interfacial mechanical locking between the adhesive and the bonding substrate. This results in multiple regimes of strain hardening and strain softening, evidenced by multiple regions of steady-state creep, separated by strong transitions in the creep rates. This complex, multi-phase, nonlinear creep response cannot be described by conventional creep constitutive models commonly used for polymers in commercial finite element codes. Accordingly, based on the empirical uniaxial tensile creep response and the mechanisms behind it, a new mechanistic model was proposed. This is capable of quantitatively capturing the characteristic features of the multiphase creep response of single-layered PSA joints as a function of viscoelastic bulk properties and free energy of the PSA material, substrate surface roughness, and interfacial surface energy between the adhesive and substrate. This is the first paper to present the modeling approach for capturing unique multi-phase creep behavior of PSA joint under tensile loading.
  • Thumbnail Image
    Item
    An Experimental and Theoretical Investigation of the Low Temperature Creep Deformation Behavior of Single Phase Titanium Alloys
    (2006-10-26) Oberson, Paul Gregory; Ankem, Sreeramamurthy; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Titanium alloys are used for many applications due to their desirable properties, including high strength-to-weight ratio, corrosion resistance, and biocompatibility. They are used for aerospace, chemical, nuclear, industrial, biomedical, and consumer applications. Often, titanium components are subject to stresses for an extended time. It is known that single-phase hexagonally close-packed (HCP) alpha and body-centered cubic (BCC) beta-titanium alloys deform over time, or creep, at low temperatures (<0.25*Tm). However, factors that affect creep behavior including microstructure and alloy chemistry are not well understood. The aim of this investigation is to experimentally and theoretically study the creep deformation behavior of single-phase alpha and beta-titanium alloys. The first part of the investigation concerns alpha-Ti alloys. The low temperature creep behavior was studied experimentally, using alpha-Ti-1.6wt.%V as the model alloy. Creep testing was performed at a range of temperatures and slip and twinning were identified as creep deformation mechanisms. The activation energy for creep was measured for the first time for an alpha-Ti than deforms by twinning. A change in activation energy during creep is explained by a model for twin nucleation caused by dislocation pileups. The theoretical aspect of the investigation concerns the phenomenon of slow twin growth (time-dependent twinning) during low temperature creep of alpha and beta-Ti alloys. This phenomenon is unusual and poorly understood as twins in bulk metals are expected to grow very fast. It was suggested that interstitial atoms, particularly oxygen could be responsible for time-dependent twinning but there were no models to explain this. As such, crystallographic models were developed for the HCP lattice of alpha-Ti and the BCC lattice of beta-Ti to show how the octahedral interstitial sites where atoms such as oxygen can reside are eliminated by the atomic movements associated with twinning. As such, the rate of twin growth, and in turn the creep strain rate is controlled by the diffusion of oxygen away from these eliminated sites. The results of these findings are valuable when designing Ti alloys for improved creep resistance and mechanical reliability. This work was supported by the National Science Foundation under Grant Number DMR-0513751.